精英家教网 > 初中数学 > 题目详情

如图,等边三角形ABD和等边三角形CBD的边长均为a,现把它们拼合起来,E是AD上异于A、D两点的一动点,F是CD上一动点,满足AE+CF=a.则△BEF的形状如何?

解:△BEF为正三角形
证明:∵AE+CF=a,AE+ED=a,
∴DE=CF,
在△BDE和△BCF中,

∴△BDE≌△BCF,
∴BE=BF,∠CBF=∠DBE,
又∵∠CBF+∠FBD=60°,
∴∠FBD+∠DBE=60°,
∴△BEF为等边三角形.
分析:根据等边三角形各边长相等和内角为60°的性质,可以求得△BDE≌△BCF,即可求得∠FBD+∠DBE=60°,根据一个内角为60°的等腰三角形可以判定为等边三角形,即可解题.
点评:本题考查了全等三角形的证明和全等三角形对应边、对应角相等的性质,考查了等边三角形的判定,本题中求证△BDE≌△BCF是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,等边三角形AOB的顶点A在反比例函数y=
3
x
(x>0)的图象上,点B在x轴上.
(1)求点B的坐标;
(2)求直线AB的函数表示式;
(3)在y轴上是否存在点P,使△OAP是等腰三角形?若存在,直接把符合条件的点P的坐标都写出来;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则
FG
AF
=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,等边三角形ABC的边长为6,点D,E分别在边AB,AC上,且AD=AE=2.若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设点F运动的时间为t秒.当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.
(1)设△EGA的面积为S,写出S与t的函数关系式;
(2)当t为何值时,AB⊥GH.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边三角形ABC的边长为a,若D、E、F、G分别为AB、AC、CD、BF的中点,则△BEG的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:013

已知:如图,在等边三角形AB,AD=BE=CF,D,E,F不是各边的中点,AE,BF,CD分别交于P,M,N在每一组全等三角形中,有三个三角形全等,在图中全等三角形的组数是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步练习册答案