【题目】某校九年级(1)班所有学生参加2016年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:
(1)、九年级(1)班参加体育测试的学生有 人;
(2)、将条形统计图补充完整.
(3)、在扇形统计图中,等级B部分所占的百分比是 ;
(4)、若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有多少人?
【答案】(1)50;(2)补图见解析;(3)72度;(4)估计达到A级和B级的学生共有595人.
【解析】(1)由A等的人数和比例,根据总数=某等人数÷所占的比例计算;
(2)根据“总数=某等人数÷所占的比例”计算出D等的人数,总数-其它等的人数=C等的人数;
(3)由总数=某等人数÷所占的比例计算出B等的比例,由总比例为1计算出C等的比例,对应的圆心角=360°×比例,问题得解.
(4)根据A、B在样本中的比例即可估算出结果.
解:(1)总人数=A等人数÷A等的比例=15÷30%=50人
故答案为50;
(2)D等的人数=总人数×D等比例=50×10%=5人,C等人数=5020155=10人,
如图所示;
(3)B等的比例=20÷50=40%,
C等的比例=140%10%30%=20%,
C等的圆心角=360×20%=72°.
故答案为:72°.
(4)(人).
答:估计达到A级和B级的学生共有595人.
科目:初中数学 来源: 题型:
【题目】证明题
(1)已知一元二次方程x2+px+q=0(p2-4q≥0)的两根为x1、x2;求证:x1+x2=-p , x1 x2=q .
(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(-1,-1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)
注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣ , )
(1)求抛物线的解析式;
(2)直接写出B、C两点的坐标;
(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.
(1)试说明 : ∠ABC=∠BFD ;
(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于不等式组 下列说法正确的是( )
A. 此不等式组无解 B. 此不等式组有7个整数解
C. 此不等式组的负整数解是﹣3,﹣2,﹣1 D. 此不等式组的解集是<x≤2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班有学生55人,其中男生与女生的人数之比为6:5。
(1)求出该班男生与女生的人数;
(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人
数2人以上。请问男、女生人数有几种选择方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了美化校园环境,争创绿色学校,某县教育局委托园林公司对A,B两校进行校园绿化,已知A校有如图的阴影部分空地需铺设草坪,B校有如图的阴影部分空地需铺设草坪,在甲、乙两地分别有同种草皮3500米和2500米出售,且售价一样,若园林公司向甲、乙两地购买草皮,其路程和运费单价表如下:
路程、运费单价表
A校 | B校 | |||
路程千米 | 运费单价元 | 路程千米 | 运费单价元 | |
甲地 | 20 | 10 | ||
乙地 | 15 | 20 |
注:运费单价表示每平方米草皮运送1千米所需的人民币
求:分别求出图1、图2的阴影部分面积;
若园林公司将甲地的草皮全部运往A校,请你求出园林公司运送草皮去A、B两校的总运费;
请你给出一种运送方案,使得园林公司支付出送草皮的总运费不超过15000元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com