精英家教网 > 初中数学 > 题目详情
7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是(  )
A.3B.4C.6D.5

分析 作DH⊥AC于H,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得$\frac{1}{2}$×2×AC+$\frac{1}{2}$×2×4=7,于是可求出AC的值.

解答 解:作DH⊥AC于H,如图,
∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,
∴DH=DE=2,
∵S△ABC=S△ADC+S△ABD
∴$\frac{1}{2}$×2×AC+$\frac{1}{2}$×2×4=7,
∴AC=3.
故选A.

点评 本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.数学活动课上,小聪同学摆弄着自己刚购买的一套三角板,将两块直角三角板的直角顶点C叠放在一起,然后转动三角板,在转动过程中,请解决以下问题:
(1)如图(1):当∠DCE=30°时,∠ACB+∠DCE=30°,若∠DCE为任意锐角时,你还能求出∠ACB与∠DCE的数量关系吗?若能,请求出;若不能,请说明理由.
(2)当转动到图(2)情况时,∠ACB与∠DCE有怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:
(1)2$\sqrt{\frac{1}{3}}$-$\sqrt{300}$
(2)$\frac{\sqrt{6}×\sqrt{3}}{\sqrt{2}}$-($\sqrt{3}$+$\sqrt{2}$)($\sqrt{3}$-$\sqrt{2}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.若a<0,那么数a和它的相反数的差的绝对值等于(  )
A.aB.2aC.-aD.-2a

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点B,与x轴交于点A,C(点A在点C的左侧),A(-1,0),C(4,0),连接AB,BC,点M(0,-$\frac{1}{2}$)为y轴负半轴上的一点,连接AM并延长交抛物线于点E,点D为线段AE上的一个动点,过点D作y轴的平行线与抛物线交于点F,与线段BC交于点N
(1)求出抛物线的表达式及直线BC的表达式
(2)在点D运动的过程中,点FN的值最大时,在线段BC上是否存在一点H,使得△FNH与△ABC相似,如果存在,求出此时H点的坐标
(3)当DF=4时,连接DC,四边形ABCD先向上平移一定单位长度后,使点D落在x轴上,然后沿x轴向左平移n(1<n<4)个单位长度,用含n的表达式表示平移后的四边形与原四边形重叠部分的面积S(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:如图,在平面直角坐标系xOy中,直线y=-$\frac{3}{4}$x+6与x轴、y轴的交点分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;
(3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:如图,AB⊥BC于B,CD⊥BC于C,AB=5,BC=8,CD=3,E为线段BC上一点.求:当AE=DE时,BE的长度,并确定此时∠AED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列说法正确的个数有(  )
①一元二次方程的一般形式为ax2+bx+c=0  
②方程x(x+3)(x-2)=0的根有三个
③一元二次方程ax2+bx+c=0的根是x=$\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$
④方程x2=x的解是x=1.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案