19£®Ð¡Ã÷ºÍСӱÓÃÒ»¸±ÆË¿ËÅÆ×öÃþÅÆÓÎÏ·£¨È¥µô´óСÍõ£©£ºÐ¡Ã÷´ÓÖÐÈÎÒâ³éÈ¡Ò»ÕÅÅÆ£¨²»·Å»Ø£©£¬Ð¡Ó±´ÓÊ£ÓàµÄÅÆÖÐÈÎÒâ³éÈ¡Ò»ÕÅ£¬Ë­Ãþµ½µÄÅÆÃæ´óË­¾Í»ñʤ£¨¹æ¶¨ÅÆÃæ´ÓСµ½´óµÄ˳ÐòΪ£º2£¬3£¬4£¬5£¬6£¬7£¬8£¬9£¬10£¬J£¬Q£¬K£¬A£¬ÇÒÅÆÃæµÄ´óСÓ뻨ɫÎ޹أ©£®È»ºóÁ½ÈË°ÑÃþµ½µÄÅƶ¼·Å»Ø£¬ÖØпªÊ¼ÓÎÏ·£®
£¨1£©ÏÖСÃ÷ÒѾ­Ãþµ½µÄÅÆÃæΪ4£¬È»ºóСӱÃþÅÆ£¬ÄÇôСÃ÷»ñʤµÄ¸ÅÂÊÊǶàÉÙ£¿Ð¡Ó±»ñʤµÄ¸ÅÂÊÓÖÊǶàÉÙ£¿
£¨2£©ÈôСÃ÷ÒѾ­Ãþµ½µÄÅÆÃæΪ2£¬Çé¿öÓÖÈçºÎ£¿Èç¹ûÈôСÃ÷ÒѾ­Ãþµ½µÄÅÆÃæΪAÄØ£¿

·ÖÎö £¨1£©Ð¡Ã÷ÒѾ­Ãþµ½µÄÅÆÃæΪ4£¬¶øСÓÚ4µÄ½á¹ûΪ4¡Á2£¬´óÓÚ4µÄ½á¹ûÊýΪ4¡Á10£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½Çó½â£»
£¨2£©Ð¡Ã÷ÒѾ­Ãþµ½µÄÅÆÃæΪ2£¬¶øСÓÚ2µÄ½á¹ûΪ0£¬´óÓÚ2µÄ½á¹ûÊýΪ4¡Á12£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½Çó½â£»Ð¡Ã÷ÒѾ­Ãþµ½µÄÅÆÃæΪA£¬¶øСÓÚAµÄ½á¹ûΪ4¡Á12£¬´óÓÚ2µÄ½á¹ûÊýΪ0£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½Çó½â£®

½â´ð ½â£º£¨1£©ÒòΪһ¸±ÆË¿ËÈ¥µô´óСÍõºó£¬¹²ÓÐ4¡Á13=52ÕÅÅÆ£¬
ÔòСÃ÷ÒѾ­Ãþµ½µÄÅÆÃæÊÇ4£¬Èç¹ûСÃ÷»ñʤµÄ»°£¬Ð¡Ó±Ö»¿ÉÄÜÃþµ½µÄÅÆÃæÊÇ2»òÕß3£¬
ËùÒÔ£¬Ð¡Ã÷»ñʤµÄ¸ÅÂÊÊÇ$\frac{2¡Á4}{51}=\frac{8}{51}$£»
Èç¹ûСӱҪ»ñʤ£¬Ãþµ½µÄÅÆÃæÖ»ÄÜÊÇ5£¬6£¬7£¬8£¬9£¬10£¬J£¬Q£¬K£¬A£¬
ËùÒÔ£¬Ð¡Ó±»ñʤµÄ¸ÅÂÊÊÇ$\frac{4¡Á10}{51}=\frac{40}{51}$£®

£¨2£©ÈôСÃ÷ÒѾ­Ãþµ½µÄÅÆÃæΪ2£¬
ÄÇôСÃ÷»ñʤµÄ¸ÅÂÊÊÇ0£¬Ð¡Ó±»ñʤµÄ¸ÅÂÊÊÇ$\frac{4¡Á12}{51}=\frac{48}{51}$£»
ÈôСÃ÷ÒѾ­Ãþµ½µÄÅÆÃæΪA£¬
ÄÇôСÃ÷»ñʤµÄ¸ÅÂÊÊÇ$\frac{4¡Á12}{51}=\frac{48}{51}$£¬Ð¡Ó±»ñʤµÄ¸ÅÂÊÊÇ0£®

µãÆÀ ±¾Ì⿼²éÁËÁÐ±í·¨ÓëÊ÷״ͼ·¨£ºÀûÓÃÁÐ±í·¨»òÊ÷״ͼ·¨Õ¹Ê¾ËùÓеȿÉÄܵĽá¹ûn£¬ÔÙ´ÓÖÐÑ¡³ö·ûºÏʼþA»òBµÄ½á¹ûÊýÄ¿m£¬È»ºóÀûÓøÅÂʹ«Ê½¼ÆËãʼþA»òʼþBµÄ¸ÅÂÊ£®Ò²¿¼²éÁ˸ÅÂʹ«Ê½£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¼ÆË㣺
£¨1£©20170+£¨-$\frac{1}{3}$£©-1-3sin60¡ã+$\root{3}{27}$
£¨2£©£¨$\frac{1}{a}$-1£©¡Â$\frac{a-1}{{a}^{2}+a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èçͼ£¬Ò»¸ö·ÅÖÃÔÚˮƽ×ÀÃæÉϵÄÔ²Öù£¬´ÓÕýÃæ¿´µ½µÄͼÐÎÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁÐÿ×éÊý·Ö±ðÊÇÈý¸ùСľ°ôµÄ³¤¶È£¬ÓÃËüÃÇΪ±ßÄÜ°Ú³ÉÈý½ÇÐεÄÊÇ£¨¡¡¡¡£©
A£®1£¬2£¬3B£®1£¬3£¬5C£®4£¬5£¬6D£®3£¬4£¬8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®½â·½³Ì×飺$\left\{\begin{array}{l}x-y=4\\ 2x+y=8\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬×÷ÁâÐÎABCDµÄ¸ßAE£¬EΪCDµÄÖе㣮AE=$\sqrt{3}$cm£¬ÔòÁâÐÎABCDµÄÖܳ¤ÊÇ£¨¡¡¡¡£©
A£®4$\sqrt{3}$cmB£®4$\sqrt{2}$cmC£®4cmD£®8cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èçͼ£¬¡÷ODCÊÇÓÉ¡÷OABÈƵãO˳ʱÕëÐýת30¡ãºóµÃµ½µÄͼÐΣ¬ÈôµãDÇ¡ºÃÂäÔÚABÉÏ£¬Ôò¡ÏBDCµÄ¶ÈÊýÊÇ30¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔĶÁÏÂÁвÄÁÏ£º
²ÄÁÏ1£º
¹«Ê½£º£¨a+b+c£©2=a2+b2+c2+2ab+2ac+2bc£®
ÔËÓÃÉÏÃ湫ʽÎÒÃÇ¿ÉÒԵóö£º
£¨2m-n-1£©2=£¨2m£©2+£¨-n£©2+£¨-1£©2+2¡Á2m£¨-n£©+2¡Á2m¡Á£¨-1£©+2¡Á£¨-n£©¡Á£¨-1£©=4m2+n2-4mn-4m+2m+1
¹«Ê½ÄæÓÿÉÒԵóö£º
4m2+n2-4mn-4m+2n+1=£¨2m-n-1£©2£®
²ÄÁÏ2£º
ÀýÌ⣺ÒÑÖªa2+4b2-2a-4b+2=0£¬Çóa£¬bµÄÖµ£®
½â£ºÒòΪa2+4b2-2a-4b+2=0£¬
ËùÒÔa2-2a+1+4b2-4b+1=0£¬
ËùÒÔ£¨a-1£©2+£¨2b-1£©2=0£¬ËùÒÔa-1=0£¬2b-1=0£¬
ËùÒÔa=1£¬b=$\frac{1}{2}$£®
²ÎÕÕÉÏÃæ²ÄÁÏ£¬½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©¼ÆË㣺£¨x+y+1£©2£»
£¨2£©ÒÑÖªx2+y2+8x-12y+52=0£¬Çóx£¬yµÄÖµ£»
£¨3£©ÒÑÖª13x2+5y2+8xy-44x-6y+41=0£¬Çó£¨x+y£©2017µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬PÊÇADÉÏÒ»¶¯µã£¬OΪBDµÄÖе㣬Á¬½ÓPO²¢ÑÓ³¤£¬½»BCÓÚµãQ£®
£¨1£©ÇóÖ¤£ºËıßÐÎPBQDÊÇƽÐÐËıßÐÎ
£¨2£©ÈôAD=6cm£¬AB=4cm£¬µãP´ÓµãA³ö·¢£¬ÒÔ1cm/sµÄËÙ¶ÈÏòµãDÔ˶¯£¨²»ÓëµãDÖغϣ©£¬ÉèµãPÔ˶¯Ê±¼äΪt s£¬ÇëÓú¬tµÄ´úÊýʽ±íʾPDµÄ³¤£¬²¢Çó³öµ±tΪºÎֵʱ£¬ËıßÐÎPBQDÊÇÁâÐΣ®²¢Çó³ö´ËʱÁâÐεÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸