精英家教网 > 初中数学 > 题目详情
15.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
(3)在(2)的条件下,直接写出tan∠CAB的值.

分析 (1)连接OD欲证明DE是⊙O的切线,只要证明∠ODE=90°即可.
(2)连接CD,首先求出AD,由△ACD∽△ADE,得到$\frac{AD}{AE}$=$\frac{AC}{DA}$,即可求出AC解决问题.
(3)作OF⊥MN于F,则四边形ODEF是矩形,根据tan∠CAB=$\frac{OF}{AF}$,求出AF即可解决问题.

解答 (1)证明:连接OD.
∵OA=OD
∴∠OAD=∠ODA
∵∠OAD=∠DAE
∴∠ODA∠DAE.
∴DO∥MN,
∵DE⊥MN,
∴∠ODE=∠DEM=90°
即OD⊥DE,
∵D在⊙O上
∴DE是⊙O的切线.

(2)解:连接CD
∵∠AED=90°,DE=6,AE=3,
∴AD=$\sqrt{D{E}^{2}+A{E}^{2}}$=$\sqrt{{6}^{2}+{3}^{2}}$=3$\sqrt{5}$,
∵AC是⊙O的直径,
∴∠ADC=∠AED=90°,
∵∠CAD=∠DAE,
∴△ACD∽△ADE,
∴$\frac{AD}{AE}$=$\frac{AC}{DA}$,
∴$\frac{3\sqrt{5}}{3}$=$\frac{AC}{3\sqrt{5}}$,
∴AC=15,
∴⊙O的半径是7.5cm.

(3)解:作OF⊥MN于F,则四边形ODEF是矩形,OF=AD=6,
∴AF=$\sqrt{O{A}^{2}-O{F}^{2}}$=$\sqrt{7.{5}^{2}-{6}^{2}}$=4.5,
∴tan∠CAB=$\frac{OF}{AF}$=$\frac{6}{4.5}$=$\frac{4}{3}$.

点评 本题考查圆综合题、切线的判定、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活应用相似三角形性质解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.(1)计算:tan45°-$\sqrt{3}$tan30°+cos45°
(2)解方程:x2+2x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在不透明的布袋里,装有红、黄、蓝三种除颜色外其余都相同的小球,其中有红球2个,篮球1个,黄球若干个,从中任意摸出一球是红球的概率为$\frac{1}{2}$.
(1)口袋中黄球的个数是1;
(2)小东先随机摸出一个球(不放回),再随机摸出一球,请用“画树状图”或“列表法”,求两次摸出都是红球的概率;
(3)现规定:摸到红球得5分,摸到黄球得3分,摸到蓝球得2分(每次摸后不放回),小明在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机再摸一次,求他三次摸球所得分数之和不低于10分的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在⊙O中,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.
(1)求证:∠PCA=∠B;
(2)填空:已知∠P=40°,AB=12cm,点Q在$\widehat{ABC}$上,从点A开始以πcm/s的速度逆时针运动到点C停止,设运动时间为ts.
①当t=3s时,以点A、Q、B、C为顶点的四边形面积最大;
②当t=$\frac{13}{3}$s时,四边形AQBC是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先化简,再求值:($\frac{{x}^{2}}{x-1}$+$\frac{9}{1-x}$)÷$\frac{x+3}{x-1}$,x在1,2,-3中选取合适的数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.平面内的两条直线有相交和平行两种位置关系.

(1)如图2,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.
(2)如图1,在AB∥CD的前提下,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?并证明你的结论.
(3)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,写出∠BPD、∠B、∠D、∠BQD之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某校九(1)班所有学生参加2015年初中毕业生体育考试,根据测试评分标准,将他们的体育成绩进行统计后分为A,B,C,D四个等级,并绘制成如图所示的不完全的条形统计图和扇形统计.
根据图中所给信息,解答下列问题:
(1)九(1)班参加体育测试的学生有多少人?
(2)等级B部分所占的圆心角的度数;
(3)将条形统计图补充完整;
(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC与△OCD中,∠ACB=∠DCO=90°,O为AB的中点.
(1)求证:∠B=∠ACD;
(2)已知点E在AB上,且BC2=AB•BE;
①证明:CD与以A为圆心、AE为半径的⊙A相切;
②若tan∠ACD=$\frac{3}{4}$,BC=10,求CE的长,设①中的⊙A与DB交于点M,直接写出DM=$\frac{81}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.问题提出:(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,即∠NMC=∠MAE.
(下面请你完成余下的证明过程)
问题探究:(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
解决问题:(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=$\frac{(n-2)180°}{n}$时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

查看答案和解析>>

同步练习册答案