【题目】某校3月份开展网络授课教学,该校随机抽取部分学生,按四个类别(A、很喜欢;B、喜欢;C、一般;D、不喜欢;)统计它们对网络授课的接受情况,并将结果绘制成如下两幅不完整的统计图:
(1)这次共抽取_________名学生进行统计调查;扇形统计图中,D类所对应的扇形圆心角的大小为_______;
(2)将条形图补充完整;
(3)该校共有1500名学生,估计该校表示“喜欢”网络授课的B类的学生大约有多少人?
【答案】(1)50;72°;(2)见解析;(3)该校表示“喜欢”网络授课的B类的学生大约有690人
【解析】
(1)利用C类学生人数除以其所占调查总人数的百分比即可求出调查总人数,然后利用D类学生人数除以调查总人数,再乘360°即可求出结论;
(2)求出A类学生人数,然后不全条形统计图即可;
(3)利用B类学生人数除以调查总人数,再乘1500即可求出结论.
解:(1)调查总人数为:12÷24%=50名
10÷50×360°=72°
故答案为:50;72°;
(2)A类学生人数为:50-23-12-10=5人
补全条形统计图如下
(3)23÷50×1500=690(人)
答:该校表示“喜欢”网络授课的B类的学生大约有690人.
科目:初中数学 来源: 题型:
【题目】已知:关于x的方程
(1)求证:m取任何值时,方程总有实根.
(2)若二次函数的图像关于y轴对称.
a、求二次函数的解析式
b、已知一次函数,证明:在实数范围内,对于同一x值,这两个函数所对应的函数值均成立.
(3)在(2)的条件下,若二次函数的象经过(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值均成立,求二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,点为上一点,点是半径上一动点(不与,重合),过点作射线,分别交弦,于,两点,在射线上取点,使.
(1)求证:是的切线;
(2)当点是的中点时,
①若,判断以,,,为顶点的四边形是什么特殊四边形,并说明理由;
②若,且,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP′,连接DP′,则DP′的最小值是( )
A.2-2B.4﹣2C.2﹣D.-1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.
(1)求证:EC=ED;
(2)如果OA=4,EF=3,求弦AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB边上一个动点(不与点A、B重合),E是BC边上一点,且∠CDE=30°.设AD=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.
(1)求证:;
(2)若,求.
(3)如图2,在(2)的条件下,连接CF,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=的图象经过第一象限内的一点A(n,4),过点A作AB⊥x轴于点B,且△AOB的面积为2.
(1)求m和n的值;
(2)若一次函数y=kx+2的图象经过点A,并且与x轴相交于点C,求线段AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com