精英家教网 > 初中数学 > 题目详情

【题目】重庆市居民用水的水价实行阶梯收费,标准如下表:

每户居民每月用水量(吨)

水费单价(元)

4.5

1)已知张三家5月份用水13吨,缴费47元,6月份用水15吨,缴费55元.请根据上述信息,求的值.

2)在(1)的条件下,由于天气变热,7月份是用水高峰期,张三家计划7月份水费支出不超过100元,那么张三家7月份最多可用多少吨水?

【答案】(1);(2)张三家7月份最多可用吨水

【解析】

1)根据56月份用水量和总费用列出方程组即可求解;

2)由题目中关键词“不超过”“最多”判断用不等式解决,列出不等式即可解决问题.

解:(1)由题意可知:

解得

2)当时,水费<100元.

7月份用水吨(),

解得

答:张三家7月份最多可用吨水.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.

(1)求证:四边形ADEF是平行四边形;

(2)求证:DHF=DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A(t+1,t+2),B(t+3,t+1),将点A向右平移3个长度单位,再向下平移4个长度单位得到点C.

(1)用t表示点C的坐标为_______;t表示点By轴的距离为___________;

(2)若t=1时,平移线段AB使点AB到坐标轴上的点处,指出平移的方向和距离,并求出点的坐标;

(3)若t=0时,平移线段ABMNA与点M对应)使点落在轴的负半轴上,三角形MNB的面积为4,试求点MN的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:

1)小明家到学校的路程是 米.

2)小明在书店停留了 分钟.

3)本次上学途中,小明一共行驶了 米.一共用了 分钟.

4)我们认为骑单车的速度超过 300 /分就超过了安全限度.问:在整个上学途中哪个时间段小明的骑车速度最快,最快速度为多少,在安全限度内吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,的顶点都在网格点上,其中,点坐标为

1)写出点的坐标:________)、________

2)将先向左平移个单位长度,再向上平移个单位长度,得到,画出

3)写出三个顶点坐标______)、______)、______);

4)求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知是等边三角形,点为射线上任意一点(点与点不重合),连结,将线段绕点逆时针旋转得到线段,连结并延长交射线于点

1)如图1,当时,________,猜想________

2)如图2,当点为射线上任意一点时,猜想的度数,并说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,FCA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为(  )

A. 16 B. 20 C. 18 D. 22

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)阅读思考:

小迪在学习过程中,发现数轴上两点间的距离可以用表示这两点数的差来表示,探索过程如下:

如图1所示,线段ABBCCD的长度可表示为:AB341BC54﹣(﹣1),CD3=(﹣1)﹣(﹣4),于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当ba时,ABba(较大数﹣较小数).

2)尝试应用:

①如图2所示,计算:OE   EF   

②把一条数轴在数m处对折,使表示﹣192019两数的点恰好互相重合,则m   

3)问题解决:

①如图3所示,点P表示数x,点M表示数﹣2,点N表示数2x+8,且MN4PM,求出点P和点N分别表示的数;

②在上述①的条件下,是否存在点Q,使PQ+QN3QM?若存在,请直接写出点Q所表示的数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案