精英家教网 > 初中数学 > 题目详情

【题目】已知每件奖品价格相同,每件奖品价格相同,老师要网购两种奖品件,若购买奖品件、奖品件,则微信钱包内的钱会差元;若购买奖品件、奖品件,则微信钱包的钱会剩余元,老师实际购买了奖品件,奖品件,则微信钱包内的钱会剩余__________.

【答案】1610

【解析】

A奖品价格为x/个,B奖品价格为y/个,微信钱包金额为z元,根据题意可得9x+7y=z+230,7x+9y=z-230,从而得到8x+8y=z,x-y=230,从而得到结论.

A奖品价格为x/个,B奖品价格为y/个,微信钱包金额为z元,根据题意得:

,

由①+②得:16x+16y=2z,8x+8y=z,则微信钱包金额刚好可以买8A产品和8B产品,

由①-②得:2x-2y=460,x-y=230,A的价格比B的价格多230,

∴x+15y=8x+8y-7(x-y)=z-7=z-1610,

∴微信钱包内的钱会剩余1610元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,对于任意两点,若点满足,那么称点是点的融合点.

例如:,当点满是时,则点是点的融合点,

1)已知点,请说明其中一个点是另外两个点的融合点.

2)如图,点,点是直线上任意一点,点是点的融合点.

①试确定的关系式.

②若直线轴于点,当为直角三角形时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的弦,OPOA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.

(1)求证:BC是O的切线;

(2)若O的半径为3,OP=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.

(1)一天中制衣所获利润P是多少(用含x的式子表示);

(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.

(3)一天当中安排多少名工人制衣时,所获利润为11806?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+2,善于思考的小明进行了以下探索:

a+b=(m+n2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当a、b、m、n均为正整数时,若a+b=(m+n2,用含m、n的式子分别表示a、b,得a=   ,b=   

(2)试着把7+4化成一个完全平方式.

(3)若a是216的立方根,b是16的平方根,试计算:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,点EF分别在边BCCD上,且∠EAF=CEF=45°.

(1)ADF绕着点A顺时针旋转90°,得到ABG(如图①),求证:AEG≌△AEF

(2)若直线EFABAD的延长线分别交于点MN(如图②),求证:EF2=ME2+NF2

(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EFBEDF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点分别在的边上运动(不与点重合),的平分线,的延长线交角的平分线于点.

1)若,求的度数.

2)若,求的度数.

3)若,请用含的代数式表示的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知三个顶点的坐标分别为

1)若将△ABC 向右平移三个单位长度得到△A1B1C1,则点 A1 的坐标为________

2)若△ABC 与△A2B2C2 关于原点 O 成中心对称,则点 A2 的坐标________

3)画出△ABC 绕原点 O 顺时针旋转 90°后的对应图形△A3B3C3,并写出 A3 的坐标_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方60米处的C点,过了5秒后,测得小汽车所在的B点与车速检测仪A之间的距离为100米.

BC间的距离;这辆小汽车超速了吗?请说明理由.

【答案】这辆小汽车没有超速.

【解析】

(1)根据勾股定理求出BC的长;
(2)直接求出小汽车的时速,进行比较得出答案.

(1)RtABC中,AC60 m

AB100 m,且AB为斜边,根据勾股定理,得BC80 m.

(2)这辆小汽车没有超速.

理由:∵80÷516(m/s)

16 m/s57.6 km/h57.6<70

∴这辆小汽车没有超速.

【点睛】

考查勾股定理的应用,熟练掌握勾股定理是解题的关键.

型】解答
束】
19

【题目】已知:如图,线段ACBD相交于点G,连接ABCDECD上一点,FDG上一点,,且

求证:,求的度数.

查看答案和解析>>

同步练习册答案