精英家教网 > 初中数学 > 题目详情
8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③S△AEF:S△CAB=1:4;④AF2=2EF2.其中正确的结论有(  )
A.4个B.3个C.2个D.1个

分析 ①根据四边形ABCD是矩形,BE⊥AC,可得∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;
②根据点E是AD边的中点,以及AD∥BC,得出△AEF∽△CBF,根据相似三角形对应边成比例,可得CF=2AF,故②正确;
③根据△AEF∽△CBF得到EF与BF的比值,据此求出S△AEF=$\frac{1}{2}$S△ABF,S△AEF=$\frac{1}{4}$S△BCF,可得S△AEF:S△CAB=1:6,故③错误;
④根据AA可得△AEF∽△BAF,根据相似三角形的性质可得AF2=2EF2,故④正确.

解答 解:∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,
∴∠EAC=∠ACB,
∵BE⊥AC,
∴∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故①正确;
∵AD∥BC,
∴△AEF∽△CBF,
∴$\frac{AE}{BC}$=$\frac{AF}{FC}$=$\frac{1}{2}$,
∵AE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,
∴$\frac{AF}{CF}$=$\frac{1}{2}$,
∴CF=2AF,故②正确;
∵△AEF∽△CBF,
∴EF:BF=1:2,
∴S△AEF=$\frac{1}{2}$S△ABF,S△AEF=$\frac{1}{4}$S△BCF
∴S△AEF:S△CAB=1:6,故③错误;
∵△AEF∽△CAB,
∴∠AEF=∠BAF,
∵∠AFE=∠BFA=90°,
∴△AEF∽△BAF,
∴$\frac{EF}{AF}$=$\frac{AF}{BF}$,
AF2=EF•BF=2EF2,故④正确.
故选:B.

点评 本题属于四边形综合题,主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算的综合应用,正确作出辅助线是解题的关键.解题时注意,相似三角形的对应边成比例.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=35°,则∠3=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解下列方程:
(1)4(x-1)2=36          
(2)x2-x-12=0
(3)x2-8x-10=0           
(4)3(x-3)2+x(x-3)=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,设运动的时间为t秒,有一点到终点运动即停止.问:是否存在这样的时刻,使S△DPQ=28cm2?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.商场某种家电每台进价40元,经市场预测,销售定价为52元时,可售出180台,销售定价每增加(或降价)1元,销售量将减少(或增多)10台.商场若希望获利2000元,每台销售定价应为多少元?应进货多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
(1)3x2y•(-2xy3
(2)(2x+y)2-(2x+3y)(2x-3y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读理解.
∵$\sqrt{4}$<$\sqrt{5}$<$\sqrt{9}$,即2<$\sqrt{5}$<3.
∴1<$\sqrt{5}$-1<2
∴$\sqrt{5}$-1的整数部分为1,
∴$\sqrt{5}$-1的小数部分为$\sqrt{5}$-2.
解决问题:已知a是$\sqrt{17}$-3的整数部分,b是$\sqrt{17}$-3的小数部分.
(1)求a,b的值;
(2)求(-a)3+(b+4)2的平方根,提示:($\sqrt{17}$)2=17.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法①(a-b)2
方法②(a+b)2-4ab.
(2)由(1)你能得出怎样的等量关系?(a-b)2=(a+b)2-4ab.
(3)根据(2)题中的等量关系,解决如下问题:若a+b=6,ab=5,则求a-b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.若|a|=4,b=3,$\sqrt{c}$=4,求a-b+c的值.

查看答案和解析>>

同步练习册答案