精英家教网 > 初中数学 > 题目详情
已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是(   )
A.无实数根B.有两个相等实数根
C.有两个异号实数根D.有两个同号不等实数根
D

试题分析:观察图象可得抛物线的最低点的纵坐标为-3,由ax2+bx+c+2=0可得ax2+bx+c=-2即得结果.
由图可得抛物线的最低点的纵坐标为-3
由ax2+bx+c+2=0可得ax2+bx+c=-2
则方程ax2+bx+c+2=0有两个同号不等实数根
故选D.
点评:解题的关键是由ax2+bx+c+2=0得到ax2+bx+c=-2,再结合图象特征进行分析.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.

(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,AC=BC=8,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(2,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形B1C1F1E1与△AEF重叠的面积为S.

(1)求折痕EF的长;
(2)直接写出S与t的函数关系式及自变量t的取 值范围.
(3)若四边形BCFE平移时,另有一动点H与四边形BCFE同时出发,以每秒个单位长度从点A沿射线AC运动,试求出当t为何值时,△HE1E为等腰三角形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y1=-2x2+2与直线y2=2x+2相交
点A和点B,

(1)求出点A和点B的坐标。
(2)观察图象,请直接写出y1>y2的自变量x的取值范围。
(3)当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2
取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.(例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.) 求:使得M=1的x值。=】

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线经过两点,与轴交于另一点

(1)求抛物线的解析式;
(2)已知点在第二象限的抛物线上,求点关于直线的对称点的坐标;
(3)在(2)的条件下,连接,点为y轴
上一点,且,求出点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数时,只在时取得最大值, 则实数的取值范围是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球距地面高度h(米)与其飞行的水平距离s(米)之间的关系式为.若球网AB距原点5米,乙(用线段CD表示)扣球的最大高度为2.25米,

(1)羽毛球的出手点高度为__________米;
(2)设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接失败,则m取值范围是__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的最大值是          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y= x2 +4x+3.

(1)用配方法将y= x2 +4x+3化成y=a (x-h) 2 +k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)写出当x为何值时,y>0.

查看答案和解析>>

同步练习册答案