精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOB=45°,点M,N在边OA上,OM=3,ON=7,点P直线OB上的点,要使点P,M,N构成等腰三角形的点P________个.

【答案】3

【解析】

先求出点M、N到在OB的距离,再根据等腰三角形的判定逐个画出即可.

解:

MMM′⊥OBM′,过NNN′⊥OBN′,

∵OM=3,ON=7,∠AOB=45°,

∴MN=4,MM′=OM×sin45°=<4,NN′=ON×sin45°=>4,MH=M′N′=4×sin45°=2<4,

所以只有一小两种情况:①以M为圆心,以4为半径画弧,交直线OBP1、P2,此时△NP1M和△NMP2都是等腰三角形;

②作线段MN的垂直平分线,交直线PBP3,此时△MNP3是等腰三角形,

即有3个点P符合,

故答案为:3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE= ,CE=1.则 的长是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在对全市初中生的体质健康测试中,青少年体质研究中心随机抽取的10名女生的立定跳远的成绩(单位:厘米)如下:123,191,216,191,159,206,191,210,186,227.

(1)通过计算,样本数据(10名女生的成绩)的平均数是190厘米,中位数是多少厘米?众数是多少厘米?

(2)本市一初中女生的成绩是194厘米,你认为她的成绩如何?说明理由;

(3)研究中心分别确定了一个标准成绩,等于或大于这个成绩的女学生该项素质分别被评定为合格”、“优秀等级,其中合格的标准为大多数女生能达到,优秀的标准为全市有一半左右的学生能够达到,你认为标准成绩分别定为多少?说明理由;按拟定的合格标准,估计该市4650人中有多少人在合格以上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,BA=BCBE平分∠ABCCDBD,且CD=BD

(1)求证:BF=AC

(2)若AD=,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.
(1)如图(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;
(2)如图(2),CD与⊙O交于另一点E.BD:DE:EC=2:3:5,求圆心O到直线CD的距离;
(3)若图(2)中的点D是直线AB上的动点,点D在运动过程中,会出现C,D,E在三点中,其中一点是另外两点连线的中点的情形,问这样的情况出现几次?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=21,BC=13,DAC边上一点,BD=12,AD=16,

(1)E是边AB的中点,求线段DE的长

(2)E是边AB上的动点,求线段DE的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还9千米.他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶(  )

A. 26千米 B. 27千米 C. 28千米 D. 30千米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC=5,AB=6,将它沿AB翻折得到△ABD,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ABC90°ABBC,直线l1l2l3分别通过ABC三点,且l1l2l3.若l1l2的距离为4l2l3的距离为6,则RtABC的面积为___________

查看答案和解析>>

同步练习册答案