分析 作点D关于AB的对称点D′,连接CD′与AB的交点即为所求的点P,CD′的长度为PC+PD的最小长度,求出弧BC的度数,再求出弧BD的度数,从而得到弧CD′的度数,连接OD′,过点O作OE⊥CD′,然后根据垂径定理求解即可.
解答 解:如图,作点D关于AB的对称点D′,连接CD′,
由轴对称确定最短路线问题,CD′与AB的交点即为所求的点P,CD′的长度为PC+PD的最小长度,
∵$\widehat{AC}$度数为96°,
∴$\widehat{BC}$的度数为180°-96°=84°,
∵$\widehat{BD}$=36°,
∴$\widehat{CD′}$的度数=84°+36°=120°,
连接OD′,过点O作OE⊥CD′,
则∠COD′=120°,OE垂直平分CD′,
∴CD′=2CE=2×$\frac{\sqrt{3}}{2}$R=$\sqrt{3}$R.
故答案为:$\sqrt{3}$R.
点评 本题考查了轴对称确定最短路线问题,垂径定理,解直角三角形,熟练掌握最短路线的确定方法,找出点P的位置是解题的关键,作出图形更形象直观.
科目:初中数学 来源: 题型:选择题
A. | 向左移动1个单位,向上移动3个单位 | |
B. | 向左移动1个单位,向下移动3个单位 | |
C. | 向右移动1个单位,向上移动3个单位 | |
D. | 向右移动1个单位,向下移动3个单位 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com