精英家教网 > 初中数学 > 题目详情
18.把(x-a)3-(a-x)2分解因式的结果为(  )
A.(x-a)2(x-a+1)B.(x-a)2(x-a-1)C.(x-a)2(x+a)D.(a-x)2(x-a-1)

分析 原式变形后,提取公因式即可得到结果.

解答 解:原式=(x-a)3-(x-a)2=(x-a)2(x-a-1),
故选B

点评 此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,四边形ABCD中,BC∥AD,BC=AB,∠BAD=90°,∠D=45°,E是BC上一点,F是CD上一点,
(1)若EF⊥AE,求证:AE=EF.
(2)若AE=EF,求证:EF⊥AE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在等边△ABC中,P是BC下方一动点,且∠BPC=120°,PB、PC是关于x的方程(a-1)x2-9(a-1)x+b=c的两实数根,求PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知梯形的面积是6,高是4,则梯形的上底y关于下底x的函数关系式是y=-x+3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.
(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).
(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.
(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在长方形ABCD中,AD=10,AB=4,点O是BC中点,点P在AD边上运动,当△OCP是等腰三角形时,试求出所有AP可能的长.(备注:若答案不唯一,则每一种情形需有详细的解答过程.)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某商店今年1-6月份经营A、B两种电子产品,已知A产品每个月的销售数量y(件)与月份x(1≤x≤6且x为整数)之间的关系如表:
x123456
y600300200150120100
A产品每个月的售价z(元)与月份x之间的函数关系式为:z=10x;已知B产品每个月的销售数量m(件)与月份x之间的关系为:m=-2x+62,B产品每个月的售价n(元)与月份x之间存在如图所示的变化趋势;
(1)请观察题中表格,用所学过的一次函数或反比例函数的有关知识,直接写出y与x的函数关系式;
(2)请观察如图所示的变化趋势,求出n与x的函数关系式;
(3)求出商店1-6月份经营A、B两种电子产品的销售总额w与月份x之间的函数关系式;
(4)今年7月份,商店调整了A、B两种电子产品的价格,A产品价格在6月份基础上增加a%,B产品价格在6月份基础上减少a%,结果7月份A产品的销售数量比6月份减少2a%,B产品的销售数量比6月份增加2a%.若调整价格后7月份的销售总额比6月份的销售总额少2000元,请根据以下参考数据估算a的值.
(参考数据:6.32=39.69,6.42=40.91,6.52=42.25,6.62=43.56)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知直线y=kx-8k(k<0)与x轴、y轴分别交于A点、B点,抛物线
y=ax2+x+c经过A点和B点,其顶点为M.
(1)直线y=kx-8k总经过一个固定的点,请直接写出这个固定点的坐标:(8,0);
(2)当抛物线的对称轴位于直线x=2的右侧时,求k的取值范围;
(3)当k=-$\frac{3}{4}$时,请判断∠AMB是钝角、直角、锐角中的哪一种,并说明理由.

查看答案和解析>>

同步练习册答案