精英家教网 > 初中数学 > 题目详情
在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,连接QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.

(1)求y关于x的函数解析式,并写出x的取值范围;
(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;
(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.
解:(1)根据题意,得AP=x,BQ=y,AB=5,
∵QM是线段BP的垂直平分线,∴
易得△ABP∽△MQB,∴,即
化简,得
∴y关于x的函数解析式为,x的取值范围为
(2)根据题意,⊙P和⊙Q的圆心距PQ="BQ=" y,⊙P的半径为,⊙Q的半径为
若⊙P和⊙Q外切,则,即
代入,得
解得 。
∴当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,
(3)∵EF=EC=4,且EF⊥PQ,EC⊥BC,
∴PQ和BC是以点E 为圆心,4为半径圆的两条切线。
连接EQ,

易得,△ABP∽△CEQ,∴
∵AB=5,AP=x,CE=4,CQ=
,即
代入,得
整理,得,解得
∴满足条件的x值为:

试题分析:(1)由△ABP∽△MQB列比例式即可得y关于x的函数解析式。
当y=13时,,解得,此为x的最小值;最大值为13。因此,x的取值范围为
(2)若⊙P和⊙Q外切,圆心距等于两半径之和,据此列式化简代入(1)的函数关系式求解。
(3)根据题意,PQ和BC是以点E 为圆心,4为半径圆的两条切线,从而可得△ABP∽△CEQ,据此列比例式简代入(1)的函数关系式求解。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,点F是平行四边形ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是 (  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如下图,n+1个腰长为2的等腰直角三角形斜边在同一直线上,设△B2D1C1(阴影部分)的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S2=__________;Sn=__________.(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.

(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;
(i)当点P与A,B两点不重合时,求的值;
(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.

(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则的值为【   】
A.1:3B.2:3C.1:4D.2:5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB⊥BD,CD⊥BD

(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;
(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(4)若AB=m,CD=n,BD=l,请问m,n,l满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个P点?两个P点?三个P点?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川泸州2分)如图,在等腰直角△ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:
(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=2OP•OC.其中正确的结论有【  】

A.1个     B.2个     C.3个     D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8。P是AC上的一个动点,当P在AC上运动时,设PC=x,△ABP 的面积为y.
(1)求AC边上的高是多少?
(2)求y与x之间的关系式。

查看答案和解析>>

同步练习册答案