分析 连接DA、DB,根据内心的概念得到AD、BD是△ABC的角平分线,求出∠ADB=135°,根据圆周角定理、勾股定理计算即可.
解答 解:连接DA、DB,
∵D为△ABC内心,
∴AD、BD是△ABC的角平分线,又∠C=90°,
∴∠ADB=135°,
∴点D在以AB为弦,∠ADB=135°的圆弧上,
设圆弧的圆心为H,连接HE并延长交圆弧于D′,
则当点C在AB上方运动时,D′E最小,
∵∠ADB=135°,
∴∠AHB=90°,
∴D′H=AH=2$\sqrt{2}$,EH=2,
∴D′E=2$\sqrt{2}$-2,
故答案为:2$\sqrt{2}$-2.
点评 本题考查的是三角形的内切圆和内心,掌握内心的性质、圆周角定理、等腰直角三角形的性质是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 80° | B. | 90° | C. | 100° | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -1 | B. | 2 | C. | -2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com