精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形ABCD中,点PCD的中点,∠BCD=60°,射线APBC的延长线于点E,射线BPDE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MONO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN=③BP=4PK④PMPA=3PD2,其中正确的是(  )

A.①②③B.①②④C.①③④D.②③④

【答案】B

【解析】

根据菱形的性质得到AD∥BC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP≌△ECP,由相似三角形的性质得到AD=CE,作PI∥CEDEI,根据点PCD的中点证明CE=2PIBE=4PI,根据相似三角形的性质得到,得到BP=3PK,故错误;作OG⊥AEG,根据平行线等分线段定理得到MG=NG,又OG⊥MN,证明△MON是等腰三角形,故正确;根据直角三角形的性质和锐角三角函数求出∠OMN=,故正确;然后根据射影定理和三角函数即可得到PMPA=3PD2,故正确.

解:作PI∥CEDEI

四边形ABCD为菱形,

∴AD∥BC

∴∠DAP=∠CEP∠ADP=∠ECP

△ADP△ECP中,

∴△ADP≌△ECP

∴AD=CE

,又点PCD的中点,

∵AD=CE

∴BP=3PK

错误;

OG⊥AEG

∵BMAEMKNAEN

∴BM∥OG∥KN

O是线段BK的中点,

∴MG=NG,又OG⊥MN

∴OM=ON

△MON是等腰三角形,故正确;

由题意得,△BPC△AMB△ABP为直角三角形,

BC=2,则CP=1,由勾股定理得,BP=

AP=

根据三角形面积公式,BM=

O是线段BK的中点,

∴PB=3PO

∴OG=BM=

MG=MP=

tan∠OMN=,故正确;

∵∠ABP=90°BM⊥AP

∴PB2=PMPA

∵∠BCD=60°

∴∠ABC=120°

∴∠PBC=30°

∴∠BPC=90°

∴PB=PC

∵PD=PC

∴PB2=3PD

∴PMPA=3PD2,故正确.

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示的正方形网格中,每个小正方形的边长均为1个单位,均在格点上,按如下要求作图.

1)将线段点按顺时针方向旋转90°点对应点为点;

2)以为对角线画一个各边都不相等的四边形,且,此时四边形的面积为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰△ABC中,ADBC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,点PQ分别在BCCD上,∠PAQ=∠B

1)如图1,若APBC,求证:APAQ

2)如图2,若点PBC上一点,APAQ仍成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8/千克,乙种水果18/千克.12月份,这两种水果的进价上调为:甲种水果10/千克,乙种水果20/千克.

1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?

2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求wa的函数关系式;

3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】北京第一条地铁线路于1971115日正式开通运营.截至20171月,北京地铁共“金山银山,不如绿水青山”.某市不断推进“森林城市”建设,今春种植四类树苗,园林部门从种植的这批树苗中随机抽取了4000棵,将各类树苗的种植棵数绘制成扇形统计图,将各类树苗的成活棵数绘制成条形统计图,经统计松树和杨树的成活率较高,且杨树的成活率为97%,根据图表中的信息解答下列问题:

1)扇形统计图中松树所对的圆心角为   度,并补全条形统计图.

2)该市今年共种树16万棵,成活了约多少棵?

3)园林部门决定明年从这四类树苗中选两类种植,请用列表法或树状图求恰好选到成活率较高的两类树苗的概率.(松树、杨树、榆树、柳树分别用ABCD表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4⊙B的半径为2P⊙B上的动点,则PD+PC的最小值等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在平行四边形ABCD中,MBC边的中点,E是边BA延长线上的一点,连结EM,分别交线段ADAC于点FG

(1)求证:

(2)BC2=2BABE时,求证:∠EMB=ACD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,以AD为直径作⊙OAB于点F,连接DB交⊙O于点HEBC上的一点,且BEBF,连接DE

1)求证:DAF≌△DCE

2)求证:DE是⊙O的切线.

3)若BF2DH,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案