精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,ABx轴上的点,CD为抛物线y=-x2+2x+3上两点,且四边形ABCD是正方形,则正方形ABCD的面积是__________

【答案】24-8

【解析】

设正方形的边长为a,令y=a,得a=-x2+2x+3,求解x,则可得出CD两点的横坐标,再根据CD=a,从而可得出关于a的方程,求出a,即可得出正方形ABCD的面积.

解:设正方形的边长为a,令y=a,得a=-x2+2x+3

解得x1=1+x2=1-

xC=1+xD=1-

CD=a= xC-xD=1+-1+=2

a2+4a-16=0

解得a=2-2(舍去负值)

∴正方形ABCD的面积=a2=24-8

故答案为:24-8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】受疫情影响,某种蔬菜的价格快速上涨,是原价的1.5倍,同样用48元能买到的蔬菜比原来少了2千克.

1)求这种蔬菜的原价是每千克多少元?

2)政府采取增加采购渠道、财政补贴等多种措施,降低特价,方便老百姓的生活.这种蔬菜的批改价两次下调后,由每千克10元降为每千克6.4元.求平均每次下调的百分率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形中,为对角线上任意一点(不与重合)连接,过点M(或的延长线)于点,连接

感知:如图,当M中点时,容易证(不用证明);

探究:如图,点M为对角线上任意一点(不与重合)请探究的数量关系,并证明你的结论.

应用:(1)直接写出的面积S的取值范围;

2)若,则的数量关系是_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.

(1)连接AE,求证:AEF是等腰三角形;

猜想与发现:

(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.

结论1:DM、MN的数量关系是

结论2:DM、MN的位置关系是

拓展与探究:

(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,EM为线段AC上两个不重合的动点(点E在点M上方,且均不与端点重合),,与BC交于点F,四边形EMNF为平行四边形,连结BN.

1)求直线AC与直线BC的解析式;

2)若设点F的横坐标为x,点M的纵坐标为y,当四边形EMNF为菱形时,请求y关于x的函数解析式及相应x的取值范围;

3)请求出当为等腰三角形时,面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1y2分别表示小东、小明离B地的距离y1y2(千米)与所用时间x(小时)的关系.

1)写出y1y2x的关系式:_____________

2)试用文字说明:交点P所表示的实际意义.

3)试求出AB两地之间的距离.

4)求出小东、小明相距4千米时出发的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1

2

3

4

5)先化简,再求值:,其中

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A. 要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法

B. 4位同学的数学期末成绩分别为10095105110,则这四位同学数学期末成绩的中位数为100

C. 甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.510.62

D. 某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖

查看答案和解析>>

同步练习册答案