【题目】如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x﹣3与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴交于另一点B
(1)求抛物线的解析式;
(2)点D是第二象限抛物线上的一个动点,连接AD、BD、CD,当S△ACD= S四边形ACBD时,求D点坐标;
(3)在(2)的条件下,连接BC,过点D作DE⊥BC,交CB的延长线于点E,点P是第三象限抛物线上的一个动点,点P关于点B的对称点为点Q,连接QE,延长QE与抛物线在A、D之间的部分交于一点F,当∠DEF+∠BPC=∠DBE时,求EF的长.
【答案】
(1)
解:∵令x=0得:y=﹣3,
∴C(0,﹣3).
令y=0得:﹣x﹣3=0,解得x=﹣3,
∴A(﹣3,0).
将A、C两点的坐标代入抛物线的解析式的: ,解得:
.
∴抛物线的解析式为y=x2+2x﹣3
(2)
解:如图1所示:
令y=0得:x2+2x﹣3=0,解得x=﹣3或x=1.
∴AB=4.
∵S△ACD= S四边形ACBD,
∴S△ADC:S△DCB=3:5.
∴AE:EB=3:5.
∴AE=4× =
.
∴点E的坐标为(﹣ ,0).
设EC的解析式为y=kx+b,将点C和点E的坐标代入得: ,
解得:k=﹣2,b=﹣3.
∴直线CE的解析式为y=﹣2x﹣3.
将y=﹣2x﹣3与y=x2+2x﹣3联立,解得:x=﹣4或x=0(舍去),
将x=﹣4代入y=﹣2x﹣3得:y=5.
∴点D的坐标为(﹣4,5)
(3)
解:如图2所示:过点D作DN⊥x轴,垂足为N,过点P作PM⊥x轴,垂足为M.
设直线BC的解析式为y=kx+b,将点C和点B的坐标代入得: ,
解得:k=3,b=﹣3.
∴直线BC的解析式为y=3x﹣3.
设直线DE的解析式为y=﹣ x+n,将点D的坐标代入得:﹣
×(﹣4)+n=5,解得n=5﹣
=
.
∴直线DE的解析式为y=﹣ x+
.
将y=3x﹣3与y=﹣ x+
联立解得:x=2,y=3.
∴点E坐标为(2,3).
依据两点间的距离公式可知:BC=CE= .
∵点P与点Q关于点B对称,
∴PB=BQ.
在△PCB和△QEB中 ,
∴△PCB≌△QEB.
∴∠BPC=∠Q.
又∵∠DEF+∠BPC=∠DBE,∠DEF=∠QEG,∠EGB=∠Q+∠QEG
∴∠DBE=∠DGB.
又∵∠DBE+∠BDE=90°,
∴∠DGB+∠BDG=90°,即∠PBD=90°.
∵D(﹣4,5),B(1,0),
∴DM=NB.
∴∠DBN=45°.
∴∠PBM=45°.
∴PM=MB
设点P的坐标为(a,a2+2a﹣3),则BM=1﹣a,PM=﹣a2﹣2a+3.
∴1﹣a=﹣a2﹣2a+3,解得:a=﹣2或a=1(舍去).
∴点P的坐标为(﹣2,3).
∴PC∥x轴.
∵∠Q=∠BPC,
∴EQ∥PC.
∴点E与点F的纵坐标相同.
将y=3代入抛物线的解析式得:x2+2x﹣3=3,解得:x=﹣1﹣ 或x=﹣1+
(舍去).
∴点F的坐标为(﹣1 ,3).
∴EF=2﹣(﹣1﹣ )=3+
【解析】(1)先求得A、C两点的坐标,然后利用待定系数法求解即可;(2)先求得AB的长,然后依据S△ACD= S四边形ACBD , 求得AE的长,可得到E的坐标为(﹣
,0),利用待定系数法可求得CE的解析式,然后CE的解析式与抛物线的解析式联立可求得点D的坐标;(3)过点D作DN⊥x轴,垂足为N,过点P作PM⊥x轴,垂足为M.先求得BC和DE的解析式,从而可求得点E的坐标,然后可证明BC=BE,然后可证明△PCB≌△QEB,得到∠BPC=∠Q,依据题意可得到∠DBE=∠DGB.接下来,在证明∠PBD=90°,∠DBN=45°,然后可求得∠PBM=45°,设点P的坐标为(a,a2+2a﹣3),则BM=1﹣a,PM=﹣a2﹣2a+3然后依据PM=MB可求得a的值,则可得到点P的坐标,然后可证明EF∥x轴,最后将点F的纵坐标代入抛物线的解析式可求得点F的横坐标,最后依据EF=xE﹣xF求解即可.
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN(如图)在图中平移,直角边MN⊥BC,顶点M、N分别在边AD、BC上,延长NM到点Q,使QM=PB.若BC=10,CD=3,则当点M从点A平移到点D的过程中,点Q的运动路径长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD是( )
A.20海里
B.40海里
C.20 海里
D.40 海里
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查,榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.
(1)榕树和香樟树的单价各是多少?
(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算该校本次购买榕树和香樟树共有哪几种方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有黑球两个,白球三个,这些小球除颜色外无其他区别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=2,BC=2,点D为斜边AB的中点,连接CD,将△BCD沿CD翻折,使点B落在点E处,点F为直角边AC上一点,连接DF,将△ADF沿DF翻折,使点A与点E重合,求折痕DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠ACB=90°,∠A=α,以C为中心将△ABC旋转θ角到△A1B1C(旋转过程中保持△ABC的形状大小不变)B点恰落在A1B1上,如图,则旋转角θ的大小为( )
A.α+10°
B.α+20°
C.α
D.2α
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com