精英家教网 > 初中数学 > 题目详情
等腰三角形的腰长为10,底边长为12,则这个等腰三角形的面积为
48
48
分析:作出图形,过顶点A作AD⊥BC于D,根据等腰三角形三线合一的性质可得BD=
1
2
BC,然后利用勾股定理列式求出AD,再根据三角形的面积公式列式计算即可得解.
解答:解:如图,过顶点A作AD⊥BC于D,
则BD=
1
2
BC=
1
2
×12=6,
由勾股定理得,AD=
AB2-BD2
=
102-62
=8,
这个等腰三角形的面积=
1
2
×12×8=48.
故答案为:48.
点评:本题考查了等腰三角形三线合一的性质,勾股定理的应用,熟记性质是解题的关键,作出图形更形象直观.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

等腰三角形的腰长为5,底边长为8,则它底边上的高为
 
,面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

5、若等腰三角形的周长为10,一边长为4,则此等腰三角形的腰长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如果一个等腰三角形的周长是18cm,其中一条边长为8cm,那么这个等腰三角形的腰长为
8或5
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

底边为8cm,底边上的高为3cm的等腰三角形的腰长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

一个等腰三角形一腰上的中线把三角形的周长分为12和15两部分,则等腰三角形的腰长为
8或10
8或10

查看答案和解析>>

同步练习册答案