精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.

(1)求证:DP∥AB;
(2)若AC=6,BC=8,求线段PD的长.
解:(1)证明:如图,连接OD,

∵AB为⊙O的直径,∴∠ACB=90°。
∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°。
∴∠DAB=∠ABD=45°。∴△DAB为等腰直角三角形。
∴DO⊥AB。
∵PD为⊙O的切线,∴OD⊥PD。
∴DP∥AB。
(2)在Rt△ACB中,
∵△DAB为等腰直角三角形,∴
∵AE⊥CD,∴△ACE为等腰直角三角形。∴
在Rt△AED中,

∵AB∥PD,∴∠PDA=∠DAB=45°。∴∠PAD=∠PCD。
又∵∠DPA=∠CPD,∴△PDA∽△PCD。∴
∴PA=PD,PC=PD。
又∵PC=PA+AC,∴PD+6=PD,解得PD=

试题分析:(1)连接OD,由AB为⊙O的直径,根据圆周角定理得∠ACB=90°,再由∠ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB。
(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到;由△ACE为等腰直角三角形,得到,在Rt△AED中利用勾股定理计算出DE=,则CD=,易证得∴△PDA∽△PCD,得到,所以PA=PD,PC=PD,然后利用PC=PA+AC可计算出PD。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,一动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线y=x相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线l的运动时间为t秒.

(1)填空:当t=1时,⊙P的半径为       ,OA=       ,OB=       
(2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平行四边形.
①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示)
②当点C在直线y=x上方时,过A、B、C三点的⊙Q与y轴的另一个交点为点D,连接DC、DA,试判断△DAC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,经过圆上点D的直线CD恰∠ADC=∠B。

(1)求证:直线CD是⊙O的的切线;
(2)过点A作直线AB的垂线交BD的延长线于点E,且AB=,BD=2,求线段AE的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.

(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.

(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3cm,则弦AB 的长为
A.9cmB.3cmC.cmD.cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1与⊙O2的半径分别为3cm和5cm,若圆心距O1O2=8cm,则⊙O1与⊙O2的位置关系是【   】
A.相交B.相离C.内切D.外切

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在圆O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:圆O半径为,tan∠ABC=,则CQ的最大值是
A.5B.  C.   D.

查看答案和解析>>

同步练习册答案