精英家教网 > 初中数学 > 题目详情
如图,抛物线y=
1
2
x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A精英家教网的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:
2
≈1.41,
3
≈1.73,
5
≈2.24)
分析:(1)由已知可得A(-3,0)、B(1,0),代入抛物线解析式,可求m,n值;(2)由已知的二次函数解析式可求P,C两点坐标,从而可求直线PC的解析式;(3)关键是求点A到直线PC的距离,再与圆的半径2.5进行比较;为此,过点A作AE⊥PC,垂足为E,由△COD∽△AED,求出两个三角形中相关线段长,利用相似比求AE;
解答:解:(1)由已知条件可知:抛物线y=
1
2
x2+mx+n经过A(-3,0)、B(1,0)两点.
0=
9
2
-3m+n
0=
1
2
+m+n

解得m=1,n=-
3
2


(2)∵y=
1
2
x2+x-
3
2

∴P(-1,-2),C(0,-
3
2
)

设直线PC的解析式是y=kx+b,则
-2=-k+b
b=-
3
2

解得k=
1
2
,b=-
3
2

∴直线PC的解析式是y=
1
2
x-
3
2
精英家教网

(3)如图,过点A作AE⊥PC,垂足为E.
设直线PC与x轴交于点D,则点D的坐标为(3,0).
在Rt△OCD中,
∵OC=
3
2
,OD=3,
CD=
(
3
2
)
2
+32
=
3
2
5

∵OA=3,OD=3,
∴AD=6.
∵∠COD=∠AED=90°,∠CDO公用,
∴△COD∽△AED.
OC
AE
=
CD
AD
,即
3
2
AE
=
3
2
5
6

∴AE=
6
5
5
≈2.688>2.5
∴以点A为圆心、直径为5的圆与直线PC相离.
点评:本题考查了抛物线解析式的求法,抛物线上特殊点的运用,及直线与圆的位置关系的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C,如果OB=OC=
1
2
OA,那么b的值为(  )
A、-2
B、-1
C、-
1
2
D、
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,抛物线y=x2+bx+c(b、c为常数)经过原点和E(3,0).
(1)求该抛物线所对应的函数关系式;
(2)设A是该抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值及此时点A的坐标;如果不存在,请说明理由;
③当B(
12
,0)时,x轴上是否存在两点P、Q(点P在点Q的左边),使得四边形PQDA是菱形?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=
12
(x+1)2-2
与x轴交于A、B两点,P为该抛物线上一点,且满足△PAB的面积等于4,这样的点P有
3
3
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+
5
2
与直线ABy=
1
2
x+
1
2
交于x轴上的一点A,和另一点B(4,n).点P是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线PQ与直线AB垂直,交直线AB于点Q,.
(1)求抛物线的解析式和cos∠BAO的值;
(2)设点P的横坐标为m用含m的代数式表示线段PQ的长,并求出线段PQ长的最大值;
(3)点E是抛物线上一点,过点E作EF∥AC,交直线AB与点F,若以E、F、A、C为顶点的四边形为平行四边形,直接写出相应的点E的坐标.

查看答案和解析>>

同步练习册答案