分析 (1)先由抛物线解析式确定出对称轴,再用中点坐标确定出点A的坐标,代入抛物线解析式确定出抛物线解析式,化为顶点式即可得出顶点坐标;
(2)由(1)的条件,确定出直线AC解析式,由PQ⊥AC,确定出点P的坐标,消去y即可;
(3)先判断出△ACE∽△APQ,再判断出∠ACB=90°,从而得到TR△BCD≌RT△BED,判断出BD∥AP,进而确定出AP解析式,联立直线AP,抛物线的解析式确定出点P坐标.
解答 解:(1)∵抛物线y=ax2-2ax+$\frac{3}{2}$,
∴抛物线对称轴为x=-$\frac{-2a}{2a}$=1,
∵抛物线的顶点为C,
∴点C的横坐标为1,
设点A(n,0)
∵直线AC交y轴于点D,D为AC的中点.
∴$\frac{1+n}{2}$=0,
∴n=-1,
∴A(-1,0),
∵点A在抛物线y=ax2-2ax+$\frac{3}{2}$上,
∴a+2a+$\frac{3}{2}$=0,
∴a=-$\frac{1}{2}$,
∴抛物线解析式为y=-$\frac{1}{2}$x2+x+$\frac{3}{2}$=$\frac{1}{2}$(x-1)2+2,
∴抛物线的顶点坐标C(1,2)
(2)由(1)有,抛物线解析式为y=-$\frac{1}{2}$x2+x+$\frac{3}{2}$,
∵点x轴上的点B在抛物线上,
∴B(3,0),
∵直线AC交y轴于点D,D为AC的中点.且A(-1,0),C(1,2),
∴D(0,1),
∵A(-1,0),C(1,2),
∴直线AC解析式为y=x+1,
∵PQ⊥AC,
∴设直线PQ解析式为y=-x+b,
∵设点P(t,-$\frac{1}{2}$t2+t+$\frac{3}{2}$),
∴直线PQ解析式为y=-x-$\frac{1}{2}$t2+2t+$\frac{3}{2}$,
∵点Q在直线AC上,且点Q的横坐标为m,
∴$\left\{\begin{array}{l}{y=m+1}\\{y=-m-\frac{1}{2}{t}^{2}+2t+\frac{3}{2}}\end{array}\right.$,
∴m=-$\frac{1}{4}$t2+t+$\frac{1}{4}$;
(3)如图,
连接DE,BD,BC,
∵CE⊥AP,
∴∠ACE+∠CAE=90°,
∵PQ⊥AC,
∴∠APQ+∠CAE=90°,
∴∠ACE=∠APQ,
∵∠CAE=∠CAE
∴△ACE∽△APQ,
∴∠APQ=∠ACE,
∵∠AEC=90°,
∴DE=AD=CD,
∴∠ACE=∠DEC,
∵∠CEP=90°,
∴EF=QF=PF,
∴∠APQ=∠PEF,
∴∠PEF=∠APQ=∠ACE=∠CED,
∴∠CED+∠BEC=∠PEF+∠BEC=∠PEC=90°,
∵点A(-1,0),D(0,1),
∴OA=OD,
∴∠BAC=45°
∵点A,B是抛物线与x轴的交点,点C是抛物线的顶点,
∴AC=BC,
∴∠ABC=∠BAC=45°,
∴∠ACB=90°
在TR△BCD和RT△BED中,$\left\{\begin{array}{l}{DE=DC}\\{BD=BD}\end{array}\right.$,
∴TR△BCD≌RT△BED,
∴∠BDC=∠BDE,
∵DE=DC,
∴BD⊥CE,
∵AP⊥CE,
∴AP∥BD,
∵B(3,0),D(0,1),
∴直线BD解析式为y=-$\frac{1}{3}$x+1,
∵A(-1,0),
∴直线AP解析式为y=-$\frac{1}{3}$x-$\frac{1}{3}$,
联立抛物线和直线AP解析式得,$\left\{\begin{array}{l}{y=-\frac{1}{3}x-\frac{1}{3}}\\{y=-\frac{1}{2}{x}^{2}+x+\frac{3}{2}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{x}_{1}=\frac{11}{3}}\\{{y}_{1}=-\frac{14}{9}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=-1}\\{{y}_{2}=0}\end{array}\right.$(舍)
∴P($\frac{11}{3}$,-$\frac{14}{9}$).
点评 此题是二次函数综合题,主要考查了待定系数法求直线和抛物线解析式,相似三角形的性质和判定,全等三角形的性质和判定,直角三角形的性质,解本题的关键是确定出函数解析式,难点是判断BD∥AP,是一道综合性比较强,难度比较大的中考常考题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com