精英家教网 > 初中数学 > 题目详情
(2011•兰州一模)如图,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且BC=CO,则tan∠ADC=
3
3
3
3
分析:由AB为圆O的切线,根据切线的性质,得到OA与AB垂直,即三角形OAB为直角三角形,又BC=OC,得到OC等于OB的一半,再根据半径OC与OA相等,等量代换可得OA等于OB的一半,根据直角三角形中一直角边等于斜边的一半,得到这条边所对的角为30°,根据直角三角形的两锐角互余可求出∠AOB为60°,由同弧所对的圆周角等于所对圆心角的一半,可得∠ADC为30°,利用特殊角的三角函数值即可求出tan∠ADC的值.
解答:解:∵直线AB是⊙O的切线,A为切点,
∴OA⊥AB,
∴∠OAB=90°,
∵BC=CO=
1
2
OB,
又OA=OC,
∴OA=
1
2
OB,
∴∠B=30°,
∴∠AOC=60°,
又∵∠AOC与∠ADC分别为
AC
所对的圆心角和圆周角,
∴∠ADC=
1
2
∠AOC=30°,
则tan∠ADC=tan30°=
3
3

故答案为:
3
3
点评:此题考查了切线的性质,直角三角形的性质,圆周角定理,以及特殊角的三角函数值,其中圆的切线性质为圆的切线垂直于过切点的直径,直角三角形的性质为直角三角形中一直角边等于斜边的一半,得到这条边所对的角为30°,灵活运用两性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•兰州一模)如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=6cm,则圆心在C点,半径为3cm的圆与AB的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•兰州一模)一个圆锥的底面半径为6cm,圆锥侧面展开图扇形的圆心角为240°,则圆锥的高为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•兰州一模)(1)计算:(π-
2
0+(
1
3
-1-
27
cos30°
(2)如图,在梯形ABCD中,AB∥CD
①用尺规作图法,作∠DAB的角平分线AF(只保留作图痕迹,不写作法和证明)
②若AF交CD边于点E,判断△ADE的形状(只写结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•兰州一模)如图,已知:一次函数:y=-x+4的图象与反比例函数:y=
3x
(x>0)的图象分别交于A、B两点.点M是一次函数图象在第一象限部分上的任意一点,过M分别向x轴、y轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N为反比例函数图象上任意一点,过N分别向x轴、y轴作垂线,垂足分别为N1、N2,设矩形NN1ON2的面积为S2
(1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求出S1的最大值及相应的x的值;
(2)填空:
①当S1=S2时,x=
1或3
1或3

②当S1>S2时,x的取值范围是
1<x<3
1<x<3

③当S1<S2时的取值范围是
0<x<1或3<x<4
0<x<1或3<x<4

查看答案和解析>>

同步练习册答案