精英家教网 > 初中数学 > 题目详情
7.化简:
(1)$\frac{a-b}{a-2b}$÷$\frac{{a}^{2}-{b}^{2}}{{a}^{2}-4ab+{4b}^{2}}$;             
(2)$\frac{x-3}{x-2}$÷(x+2-$\frac{5}{x-2}$).

分析 根据分式的运算法则即可求出答案.

解答 解:(1)原式=$\frac{a-b}{a-2b}$×$\frac{(a-2b)^{2}}{(a+b)(a-b)}$
=$\frac{a-2b}{a+b}$
(2)原式=$\frac{x-3}{x-2}$÷$\frac{{x}^{2}-9}{x-2}$
=$\frac{x-3}{x-2}$×$\frac{x-2}{(x+3)(x-3)}$
=$\frac{1}{x+3}$

点评 本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,直线y=-$\frac{3}{4}$x+3与y轴交于点C,与x轴交于点D,点P是直线y=$\frac{1}{2}$x+3上的一个动点(点P在第一象限),过P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)若PE=5EF,求m的值;
(2)过点P作PG∥CD交y轴于点G,判断四边形PECG的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图所示,等腰直角三角形ABC的直角边长于正方形MNPQ的边长均为10cm,边CA与边MN在同一直线上,点A与M重合,让△ABC沿MN方向运动.
(1)当点A与点N重合时停止运动.试写出运动中两个图形重叠部分面积y(cm2)与MA长度x(cm)之间的函数表达式,并指出自变量x的取值范围.
(2)当点C与点M重合后,△ABC继续沿MN方向运动,点C与点N重合时停止运动,试写出运动中两个图形重叠部分面积y(cm2)与MA长度x(cm)之间的函数表达式,并指出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知△ABC的三边长分别为AB=2$\sqrt{5}$,AC=2,BC=4$\sqrt{\frac{1}{2}}$.
(1)在如图所示的5×5方格内画出△ABC,并使其顶点都在格点上;
(2)求S△ABC及最长边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,矩形ABCD中,AB=8,BC=3,顶点A,B分别在y轴和x轴上,当点A在y轴上移动时,点B也随之在x轴上移动,在移动过程中,OD的最大值为(  )
A.8B.$\sqrt{73}$C.$\sqrt{85}$D.9

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.计算:4xy2(2x-xy)÷(-2xy)2的结果是2-y.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.当x取什么值时,代数式$\frac{2x+3}{2}$的值与1-$\frac{x-1}{3}$的值相等?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:如图,Rt△ABC中,∠C=90°,AC=$\sqrt{10}+\sqrt{2}$,BC=$\sqrt{10}-\sqrt{2}$,求
(1)Rt△ABC的面积.
(2)斜边AB的长.
(3)求AB边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称或中心对称变换,若原来点A的坐标是(a,b)
则经过第2017次变换后所得的A点坐标是(a,-b).

查看答案和解析>>

同步练习册答案