【题目】阅读材料:
如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.
回答问题:
(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.
①若A是线段DB的中点,则点D表示的数是 ;
②若E是线段AC的中点,求点E表示的数.
(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.
①若点P表示的数是1,则m、n可能的值是 (填写符合要求的序号);
(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2
②直接用含m、n的代数式表示点P表示的数.
【答案】(1)①﹣4;②;(2)①(i)(ii)(iii);②.
【解析】
(1)①依据点A所表示的数是-2,点B所表示的数是0,A是线段DB的中点,即可得到点D表示的数;②依据点A所表示的数是-2,点C所表示的数是3,E是线段AC的中点,即可得到点E表示的数;
(2)①依据点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,即可得到m、n可能的值;②依据中点公式即可得到结果.
解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB的中点,
∴点D表示的数是﹣4,
故答案为:﹣4;
②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,
∴点E表示的数为.
(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,
∴1=,即m+n=2,
∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.
故答案为:(i)(ii)(iii);
②点P表示的数为.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3 ,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AC=AD,∠CAD=60°,分别连接BC、BD,作AE平分∠BAC交BD于点E,若BE=4,ED=8,则DF=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,过点A的双曲线y= 的一支在第一象限交梯形对角线OC于点D,交边BC于点E.
(1)填空:双曲线的另一支在第象限,k的取值范围是;
(2)若点C的坐标为(2,2),当点E在什么位置时,阴影部分的面积S最小?
(3)若 = ,S△OAC=2,求双曲线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+12x﹣30的顶点为A,对称轴AB与x轴交于点B.在x上方的抛物线上有C、D两点,它们关于AB对称,并且C点在对称轴的左侧,CB⊥DB.
(1)求出此抛物线的对称轴和顶点A的坐标;
(2)在抛物线的对称轴上找出点Q,使它到A、C两点的距离相等,并求出点Q的坐标;
(3)延长DB交抛物线于点E,在抛物线上是否存在点P,使得△DEP的面积等于△DEC的面积?若存在,请你直接写出点P的坐标;若不存在,请说明理由.
提示:抛物线y=ax2+bx+c(a≠0)的对称轴为 ,顶点坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长( )
A. 2 B. 3 C. 1 D. 8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com