3£®Èçͼ1£¬ÒÑÖªÅ×ÎïÏßy=ax2-2ax+4ÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬ÇÒOB=OC£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©ÈôµãPÊÇÏ߶ÎABÉϵÄÒ»¸ö¶¯µã£¨²»ÓëA¡¢BÖغϣ©£¬·Ö±ðÒÔAP¡¢BPΪһ±ß£¬ÔÚÖ±ÏßABµÄͬ²à×÷µÈ±ßÈý½ÇÐÎAPMºÍBPN£¬Çó¡÷PMNµÄ×î´óÃæ»ý£¬²¢Ð´³ö´ËʱµãPµÄ×ø±ê£»
£¨3£©Èçͼ2£¬ÈôÅ×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãD£¬FÊÇÅ×ÎïÏßÉÏλÓÚ¶Ô³ÆÖáÓÒ²àµÄÒ»¸ö¶¯µã£¬Ö±ÏßFDÓëyÖá½»ÓÚµãE£®ÊÇ·ñ´æÔÚµãF£¬Ê¹¡÷DOEÓë¡÷AOCÏàËÆ£¿Èô´æÔÚ£¬ÇëÇó³öµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Áîx=0µÃ£¬y=4£¬Çó³öµãC£¨0£¬4£©£¬¸ù¾ÝOB=OC=4£¬µÃµ½µãB£¨4£¬0£©´úÈëÅ×ÎïÏß±í´ïʽÇó³öaµÄÖµ£¬¼´¿É½â´ð£»
£¨2£©¹ýµãM×÷MG¡ÍxÖáÓÚG£¬¹ýµãN×÷NH¡ÍxÖáÓÚH£¬ÉèP£¨x£¬0£©£¬¡÷PMNµÄÃæ»ýΪS£¬·Ö±ð±íʾ³öPG=$\frac{2+x}{2}$£¬MG=$\frac{{\sqrt{3}}}{2}£¨{2+x}£©$£¬PH=$\frac{4-x}{2}$£¬NH=$\frac{{\sqrt{3}}}{2}£¨{4-x}£©$£¬¸ù¾ÝS=SÌÝÐÎMGHN-S¡÷PMG-S¡÷PNH=$-\frac{{\sqrt{3}}}{4}{£¨{x-1}£©^2}+\frac{{9\sqrt{3}}}{2}$£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʵ±x=1ʱ£¬SÓÐ×î´óÖµÊÇ$\frac{{9\sqrt{3}}}{2}$£¬¼´¿É½â´ð£»
£¨3£©´æÔÚµãF£¬Ê¹µÃ¡÷DOEÓë¡÷AOCÏàËÆ£®ÓÐÁ½ÖÖ¿ÉÄÜÇé¿ö£º¢Ù¡÷DOE¡×¡÷AOC£»¢Ú¡÷DOE¡×¡÷COA£¬ÏÈÇó³öµãEµÄ×ø±ê£¬ÔÙÇó³öÖ±ÏßDEµÄ½âÎöʽ£¬ÀûÓ÷½³Ì×éÇó³öµãFµÄ×ø±ê£¬¼´¿É½â´ð£®

½â´ð ½â£º£¨1£©Áîx=0µÃ£¬y=4£¬¡àC£¨0£¬4£©
¡àOB=OC=4£¬¡àB£¨4£¬0£©
´úÈëÅ×ÎïÏß±í´ïʽµÃ£º
16a-8a+4=0£¬½âµÃa=$-\frac{1}{2}$
¡àÅ×ÎïÏߵĺ¯Êý±í´ïʽΪ$y=-\frac{1}{2}{x^2}+x+4$
£¨2£©Èçͼ2£¬¹ýµãM×÷MG¡ÍxÖáÓÚG£¬¹ýµãN×÷NH¡ÍxÖáÓÚH£¬

ÓÉÅ×ÎïÏß$y=-\frac{1}{2}{x^2}+x+4$µÃ£ºA£¨-2£¬0£©£¬
ÉèP£¨x£¬0£©£¬¡÷PMNµÄÃæ»ýΪS£¬
ÔòPG=$\frac{2+x}{2}$£¬MG=$\frac{{\sqrt{3}}}{2}£¨{2+x}£©$£¬PH=$\frac{4-x}{2}$£¬NH=$\frac{{\sqrt{3}}}{2}£¨{4-x}£©$
¡àS=SÌÝÐÎMGHN-S¡÷PMG-S¡÷PNH
=$\frac{1}{2}£¨{MG+NH}£©¡ÁGH-\frac{1}{2}PG¡ÁMG-\frac{1}{2}PH¡ÁNH$
=$-\frac{{\sqrt{3}}}{4}{x^2}+\frac{{\sqrt{3}}}{2}x+2\sqrt{3}$                                       
=$-\frac{{\sqrt{3}}}{4}{£¨{x-1}£©^2}+\frac{{9\sqrt{3}}}{2}$
¡ß$-\frac{{\sqrt{3}}}{4}£¼0$£¬
¡àµ±x=1ʱ£¬SÓÐ×î´óÖµÊÇ$\frac{{9\sqrt{3}}}{2}$
¡à¡÷PMNµÄ×î´óÃæ»ýÊÇ$\frac{{9\sqrt{3}}}{2}$£¬´ËʱµãPµÄ×ø±êÊÇ£¨1£¬0£©
£¨3£©´æÔÚµãF£¬Ê¹µÃ¡÷DOEÓë¡÷AOCÏàËÆ£®ÓÐÁ½ÖÖ¿ÉÄÜÇé¿ö£º
¢Ù¡÷DOE¡×¡÷AOC£»¢Ú¡÷DOE¡×¡÷COA
ÓÉÅ×ÎïÏß$y=-\frac{1}{2}{x^2}+x+4$µÃ£ºA£¨-2£¬0£©£¬¶Ô³ÆÖáΪֱÏßx=1£¬
¡àOA=2£¬OC=4£¬OD=1
¢ÙÈô¡÷DOE¡×¡÷AOC£¬Ôò$\frac{OD}{OA}=\frac{OE}{OC}$
¡à$\frac{1}{2}=\frac{OE}{4}$£¬
½âµÃOE=2
¡àµãEµÄ×ø±êÊÇ£¨0£¬2£©»ò£¨0£¬-2£©
ÈôµãEµÄ×ø±êÊÇ£¨0£¬2£©£¬
ÔòÖ±ÏßDEΪ£ºy=-2x+2
½â·½³Ì×é$\left\{\begin{array}{l}y=-2x+2\\ y=-\frac{1}{2}{x^2}+x+4\end{array}\right.$                       
µÃ£º$\left\{\begin{array}{l}{x_1}=3+\sqrt{13}\\{y_1}=-4-2\sqrt{13}\end{array}\right.$£¬$\left\{\begin{array}{l}{x_2}=3-\sqrt{13}\\{y_2}=-4+2\sqrt{13}\end{array}\right.$£¨²»ºÏÌâÒ⣬ÉáÈ¥£©
´ËʱÂú×ãÌõ¼þµÄµãF1µÄ×ø±êΪ£¨$3+\sqrt{13}$£¬$-4-2\sqrt{13}$£©
ÈôµãEµÄ×ø±êÊÇ£¨0£¬-2£©£¬
ͬÀí¿ÉÇóµÃÂú×ãÌõ¼þµÄµãF2µÄ×ø±êΪ£¨$-1+\sqrt{13}$£¬$-3+2\sqrt{13}$£©
¢ÚÈô¡÷DOE¡×¡÷COA£¬
ͬÀíÒ²¿ÉÇóµÃÂú×ãÌõ¼þµÄµãF3µÄ×ø±êΪ£¨$\frac{{\sqrt{37}+3}}{2}$£¬$-\frac{{\sqrt{37}+1}}{4}$£©
Âú×ãÌõ¼þµÄµãF4µÄ×ø±êΪ£¨$\frac{{\sqrt{37}+1}}{2}$£¬$\frac{{\sqrt{37}-1}}{4}$£©
×ÛÉÏËùÊö£¬´æÔÚÂú×ãÌõ¼þµÄµãF£¬µãFµÄ×ø±êΪ£º
F1£¨$3+\sqrt{13}$£¬$-4-2\sqrt{13}$£©¡¢F2£¨$-1+\sqrt{13}$£¬$-3+2\sqrt{13}$£©¡¢F3£¨$\frac{{\sqrt{37}+3}}{2}$£¬$-\frac{{\sqrt{37}+1}}{4}$£©»òF4£¨$\frac{{\sqrt{37}+1}}{2}$£¬$\frac{{\sqrt{37}-1}}{4}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÐÔÖÊÓëÅж¨£¬ÔÚ£¨2£©ÖÐÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾ö×îÖµÎÊÌâÊǹؼü£¬ÔÚ£¨3£©ÖзÖÀàÌÖÂÛ˼ÏëµÄÓ¦ÓÃÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÈçͼËùʾ£¬ÒÑÖªº¯Êýy=-$\frac{1}{2}$x+bµÄͼÏóÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãA¡¢B£¬Ó뺯Êýy=xµÄͼÏó½»ÓÚµãM£¬µãMµÄºá×ø±êΪ2£¬ÔÚxÖáÉÏÓÐÒ»µãP£¨a£¬0£©£¨ÆäÖÐa£¾2£©£¬¹ýµãP×÷xÖáµÄ´¹Ïߣ¬·Ö±ð½»º¯Êýy=-$\frac{1}{2}$x+bºÍy=xµÄͼÏóÓÚµãC£¬D£®
£¨1£©ÇóÖ±ÏßABµÄº¯Êý¹Øϵʽ£»
£¨2£©ÈôOB=CD£¬ÇóaµÄÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÇóËıßÐÎOMCPµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èô·½³Ì£¨m-1£©x2-mx+8=xÊǹØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì£¬Ôò´úÊýΪm2012-|1-m|µÄֵΪΪ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚÁâÐÎABCDÖУ¬¡ÏABC=60¡ã£¬BC=6$\sqrt{3}$£¬µãEÔÚABÉÏ£¬CE=2$\sqrt{7}$£¬½«CEÈƵãCÐýת60¡ãµÃµ½µÄÏ߶ÎÓëBDÏཻÓÚµãF£¬ÇëÄã»­³öͼÐΣ¬Ö±½Óд³öDFµÄ³¤£¬²¢»­³öÌåÏֽⷨµÄ¸¨ÖúÏߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª£ºa+b+2=2$\sqrt{a-1}$+4$\sqrt{b-2}$£¬Çóa¡¢bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßy=x+4ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãA£¬B£¬Å×ÎïÏßy=-x2+bx+c¾­¹ýA¡¢BÁ½µã£¬D£¨m£¬m+4£©ÎªÖ±ÏßABÉÏÒ»¶¯µã£¬¹ýµãD×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪµãC£¬CDµÄÑÓ³¤Ïß½»Å×ÎïÏßÓÚµãE£¬Á¬½ÓBE£®
£¨1£©µãAµÄ×ø±êΪ£¨-4£¬0£©£¬µãBµÄ×ø±êΪ£¨0£¬4£©£®Å×ÎïÏߵĽâÎöʽΪy=-x2-3x+4£»
£¨2£©ÈôµãDÖ»ÔÚÏ߶ÎABÉÏÔ˶¯£¬ÇÒ¡÷DBEÓë¡÷DACÏàËÆ£¬ÇómµÄÖµ£»
£¨3£©ÈôÒÔµãE¡¢D¡¢O¡¢BΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬Ö±½Óд³öDµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬Ö±Ïßy=-x+3ÓëxÖáyÖá·Ö±ð½»ÓÚµãB¡¢C£¬¾­¹ýB¡¢CÁ½µãµÄÅ×ÎïÏßÓëxÖáµÄÁíÒ»¸ö½»µãΪA£¬¶¥µãΪP£¬ÇÒ¶Ô³ÆÖáÊÇÖ±Ïßx=2£®
£¨1£©Çó´ËÅ×ÎïÏߵĺ¯Êý¹Øϵʽ£¬Ö±½Óдһ´Îº¯ÊýÖµ´óÓÚ¶þ´Îº¯ÊýֵʱxµÄÈ¡Öµ·¶Î§£®
£¨2£©ÊÔÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÕÒÒ»µãE£¬ÔÚÅ×ÎïÏßÉÏÕÒÒ»µãF£¬Ê¹ÒÔA¡¢B¡¢E¡¢FΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬Ö±½Óд³ö´ËʱE¡¢FµãµÄ×ø±ê£®
£¨3£©ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æµãP£¬Ê¹µÃÒÔPΪԲÐĵÄÔ²ÓëÖ±Ïßx=2ºÍxÖᶼÏàÇУ¿Èç¹û´æÔÚÇó³öPµãµÄ×ø±ê£¬Èç¹û²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ$\frac{1}{2}$£¬0£¬-1£¬-$\frac{1}{2}$ÕâËĸöÊýÖУ¬×îСµÄÊýÊÇ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®»­³öÊýÖᣬÔÚÊýÖáÉϱê³ö±íʾÏÂÁи÷ÊýµÄµã£¬²¢°´´Ó´óµ½Ð¡µÄ˳ÐòÓá°£¾¡±ºÅ°ÑÕâЩÊýÁ¬½ÓÆðÀ´£º
-|-2.5|£¬0£¬-£¨-$\frac{1}{2}$£©£¬+£¨-1£©2015£¬-22£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸