精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,将一块腰长为
5
的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.
(1)求点A、点B的坐标;
(2)求抛物线的解析式;
(3)设(2)中抛物线的顶点为D,求△DBC的面积.
∵OC=1,AC=
5

∴OA=
AC2-OC2
=2,
∴A的坐标为(0,2),
过点B作BF⊥x轴,垂足为F,
则CF=OA=2,BF=OC=1,
∴OF=3,
∴B的坐标为(-3,1);

(2)把B(-3,1)代入y=ax2+ax-2得:
1=9a-3a-2,
a=
1
2

∴抛物线解析式为y=
1
2
x2
+
1
2
x-2,

(3)如图,可求得抛物线的顶点D(-
1
2
,-
17
8
).
设直线BD的关系式为y=kx+b(k≠0),将点B、D的坐标代入,求得k=-
5
4
,b=-
11
4

∴BD的关系式为y=-
5
4
x
-
11
4

设直线BD和x轴交点为E,则点E(-
11
5
,0),CE=
6
5

∴△DBC的面积为
1
2
×
6
5
×(1+
17
8
)
=
15
8

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示的平面直角坐标系中,有一条抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到A、C两点距离之和最小?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,2
3
),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的
8
15
?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,Rt△OAB的OA边在x轴上,OB边在y轴上,且OA=2,AB=
5
,将△OAB绕点O逆时针方向旋转90°后得△OCD,已知点E的坐标是(2、2)
(1)求经过D、C、E点的抛物线的解析式;
(2)点M(x、y)是抛物线上任意点,当0<x<2时,过M作x轴的垂线交直线AC于N,试探究线段MN是否存在最大值,若存在,求出最大值是多少?并求出此时M点的坐标;
(3)P为直线AC上一动点,连接OP,作PF⊥OP交直线AE于F点,是否存在点P,使△PAF是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(如005•宁波)已知抛物线y=-x-如kx+rk(k>0)交x轴于A、B两点,交y轴于点C,以AB为直径的⊙E交y轴于点y、着(如图),且y着=0,G是劣弧Ay上的动点(不与点A、y重合),直线CG交x轴于点P.
(1)求抛物线的解析式;
(如)当直线CG是⊙E的切线时,求ca左∠PC右的值;
(r)当直线CG是⊙E的割线时,作GM⊥AB,垂足为y,交P着于点M,交⊙E于另一点左,设M左=c,GM=u,求u关于c的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-
5
4
x2+
17
4
x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分.则水喷出的最大高度是______米.

查看答案和解析>>

同步练习册答案