精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)在(1)(2)条件下,若AB=BC=12,BE=4,求DE的长.
(1)∵四边形ABCD是正方形,
∴BC=CD,∠B=∠ADC=∠BCD=90°.
∴∠CDF=∠B=90°.
在△CBE和△CDF中
BE=DF
∠B=∠CDF
BC=DC

∴△CBE≌△CDF,
∴CE=CF;

(2)∵△CBE≌△CDF,
∴∠BCE=∠DCF.
∵∠GCE=45°,
∴∠BCE+∠DCG=45°,
∴∠DCG+∠DCF=45°
∴∠ECG=∠FCG.
在GCE和△GCF中
GC=GC
∠ECG=∠FCG
CE=CF

∴GCE≌△GCF,
∴GE=GF.
∵GF=GD+DF,
∴GF=GD+BE,
∴GE=BE+GD;

(3)连接DE,
∵AB=BC=12,BE=4,
∴AE=8.
在Rt△ADE中,由勾股定理,得
DE=4
13

答:DE的长为4
13
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,DBAC,且DB=
1
2
AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加一个什么条件,为什么?
(3)在(2)的条件下,若要使四边形DBEA是正方形,则∠C=______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在正方形ABCD中:
(1)已知:如图①,点E、F分别在BC、CD上,且AE⊥BF,垂足为M,求证:AE=BF.
(2)如图②,如果点E、F、G分别在BC、CD、DA上,且GE⊥BF,垂足M,那么GE、BF相等吗?证明你的结论.
(3)如图③,如果点E、F、G、H分别在BC、CD、DA、AB上,且GE⊥HF,垂足M,那么GE、HF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在正方形ABCD中,E、F分别是CB、CD延长线上的点,若EF=BE+DF,求证:∠EAF=135°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将边长分别为
2
2
2
3
2
4
2
、…的正方形的面积分别记作S1、S2、S3、S4,…,计算S2-S1,S3-S2,S4-S3,….若边长为n•
2
(n为正整数)的正方形面积记作Sn,根据你的计算结果,猜想Sn-Sn-1=______.(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABDE的面积是169平方厘米,正方形CAFG面积是144平方厘米,正方形BCHK的面积是25平方厘米,则阴影四边形AGHP的面积是______平方厘米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的对角线AC是菱形AEFC的一边,则∠FAB的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果一个正方形的对角线长2
2
cm,则边长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

点G是正方形ABCD边AB的中点,点E是射线BC上一点,∠AEF=90°,且EF交正方形外角平分线CF于点F,连接EG.

(1)若E为BC的中点(如图1)
①求证:△AEG≌△EFC;
②连接DF,DB,求证:DF⊥BD;
(2)若E是BC延长线上一点(如图2),则线段CF和BE之间存在怎样的数量关系,给出你的结论并证明.

查看答案和解析>>

同步练习册答案