精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙中,AB是直径,BC是弦,BC=BD,连接CD交⊙于点E,∠BCD=∠DBE.

1)求证:BD是⊙的切线.

2)过点EEFABF,交BCG,已知DE=EG=3,求BG的长.

【答案】1)见解析;(2BG的长为5.

【解析】

1)连接AE,根据圆周角定理可得∠BAE=BCE,由AB是直径可得∠AEB=90°,进而可得∠BAE+ABE=90°,由∠BCD=DBE.利用等量代换即可求出∠ABD=90°,可得BD是⊙O的切线;(2)延长EF交⊙OH,根据垂径定理可得,进而可得∠ECB=BEH,由∠EBC是公共角即可证明△EBC∽△GBE,根据相似三角形的性质可得,根据等腰三角形的性质可得∠D=BCE,利用等量代换可得∠D=DBE,可得BE=DE,由∠AFE=ABD=90°可得EF//BD,根据平行线性质可得∠D=CEF,即可证明∠BCE=CEF,可得CG=GE,即可得出BC=BG+EG,代入求出BG的长即可.

1)如图,连接AE,则∠BAE=BCE

AB是直径,

∴∠AEB=90°

∴∠BAE+ABE=90°

∴∠ABE+BCE=90°

∵∠BCE=DBE

∴∠ABE+DBE=90°,即∠ABD=90°

BD是⊙O的切线.

2)如图,延长EF交⊙OH

EFABAB是直径,

∴∠ECB=BEH

∵∠EBC=GBE

∴△EBC∽△GBE

BC=BD

∴∠D=BCE

∵∠BCE=DBE

∴∠D=DBE

BE=DE=

∵∠AFE=ABD=90°

BDEF

∴∠D=CEF

∴∠BCE=CEF

CG=GE=3

BC=BG+CG=BG+3

BG=-8(舍)或BG=5

BG的长为5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①所示,已知正方形ABCD和正方形AEFG,连接DGBE

1)发现:当正方形AEFG绕点A旋转,如图②所示.

①线段DGBE之间的数量关系是   

②直线DG与直线BE之间的位置关系是   

2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD2ABAG2AE时,上述结论是否成立,并说明理由.

3)应用:在(2)的情况下,连接BGDE,若AE1AB2,求BG2+DE2的值(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AEBE是△ABC的两个内角的平分线,过点AADAE.交BE的延长线于点D.若ADABBEED12,则cosABC_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A.任意给定一个正方形,一定存在另一个正方形,它的周长和面积分别是已知正方形周长和面积的一半

B.任意给定一个正方形,一定存在另一个正方形,它的周长和面积分别是已知正方形周长和面积的2

C.任意给定一个矩形,一定存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半

D.任意给定一个矩形,一定存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对折矩形纸片ABCD,使ADBC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )

A.B.C.8D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.

1求∠CDE的度数;

2求证:DF是⊙O的切线;

3若AC=2DE,求tan∠ABD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用.

1)求甲、乙两工程队每天能完成塑胶改造的面积;

2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求的函数解析式;

3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1BC是⊙O的直径,点A在⊙O上,ADBC,垂足为DBE分别交ADAC于点FG

1)判断△FAG的形状,并说明理由;

2)如图2,若点E和点ABC的两侧,BEAC的延长线交于点GAD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;

3)在(2)的条件下,若BG26BDDF7,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数时的函数值相等.

1)求二次函数的解析式;

2)若一次函数的图象与二次函数的图象都经过点A,求mk的值;

3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移个单位后得到的图象记为C,同时将(2)中得到的直线向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围.

查看答案和解析>>

同步练习册答案