精英家教网 > 初中数学 > 题目详情
古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ax=b2(a>0,b>0)的方程的精英家教网图解法是:如图,以
a
2
和b为两直角边作Rt△ABC,再在斜边上截取BD=
a
2
,则AD的长就是所求方程的解.
(1)请用含字母a、b的代数式表示AD的长.
(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处.
分析:(1)先根据勾股定理求得AB的长,再求AD的长.
(2)正确性:形象直观;遗憾之处:图解法不能表示方程的负根.
解答:解:(1)∵∠C=90°,BC=
a
2
,AC=b,
∴AB=
b2+
a2
4

∴AD=
b2+
a2
4
-
a
2
=
4b2+a2
-a
2


(2)用求根公式求得:x1=
-
4b2+a2
-a
2
x2=
4b2+a2
-a
2
(2分)
正确性:AD的长就是方程的正根.
遗憾之处:图解法不能表示方程的负根.(2分)
点评:本题考查了一元二次方程的解法-公式法,解一元二次方程的方法有:直接开平方法、公式法、配方法、因式分解法,要根据方程的特点进行选择即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

古希腊数学家丢番图,被人们称为“代数学之父”.对于他的生平事迹,人们知道得很少,但在一本《希腊诗文选》中,收录了他的墓志铭:“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了他所经历的道路.上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图活了多少岁吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ax=b2(a>0,b>0)的方程的图解法是:如图,以数学公式和b为两直角边作Rt△ABC,再在斜边上截取BD=数学公式,则AD的长就是所求方程的解.
(1)请用含字母a、b的代数式表示AD的长.
(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处.

查看答案和解析>>

科目:初中数学 来源: 题型:

古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解。在欧几里得的《几何原本》中,形如(a>0,b>0)的方程的图解法是:如图,以和b为两直角边做Rt△ABC,再在斜边上截取,则AD的长就是所求方程的解。

(1)请用含字母a、b的代数式表示AD的长。

(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处。

查看答案和解析>>

科目:初中数学 来源: 题型:

古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解。在欧几里得的《几何原本》中,形如(a>0,b>0)的方程的图解法是:如图,以和b为两直角边做Rt△ABC,再在斜边上截取,则AD的长就是所求方程的解。

(1)请用含字母a、b的代数式表示AD的长。

(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处。

查看答案和解析>>

同步练习册答案