精英家教网 > 初中数学 > 题目详情
19.如图,△ABC中,∠ACB=90°,sinB=$\frac{\sqrt{3}}{2}$,BC=1,点D为斜边AB的中点,过A、C、D三点作⊙O,点P为AC所对的优弧上任意一点,点M、N分别为线段AC、AP的中点,则MN的最大值为1.

分析 先判断出三角形AOD是等边三角形,再求出OA=1,从而只要CP最大,MN最大,圆中最大的弦是直径,进而求出CP即可.

解答 解:如图

连接OA,OD,CD,
在Rt△ABC中,BC=1,sinB=$\frac{\sqrt{3}}{2}$,
∴AB=2,∠B=60°,
∴∠BAC=30°,
∵点D是直角三角形ABC斜边AB中点,
∴AD=CD=1,
∵点M是AC中点,
∴OD必过点M,
∴OD⊥AC,
∴∠ADO=60°,
∵OD=OA,
∴△AOD是等边三角形,
∴OA=1,
∵点M、N分别为线段AC、AP的中点,
∴MN=$\frac{1}{2}$CP,
要MN最大,则CP最大,
而CP是圆的弦,
∴CP是圆的直径时最大,
即CP最大=2OA=2,
∴MN最大=1.
故答案为1.

点评 此题是三角形的外接圆与外心,主要考查了圆的性质,直角三角形的性质,等边三角形的判定和性质,锐角三角函数,解本题的关键是求出圆的半径OA=1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.设a≠0,x,y是正整数,定义新运算a⊕x=ax(如果有括号,规定先算括号里面的)如:2⊕2=22=4,4⊕(m+1)=4m+1
(1)若10⊕n=100,则n=2;
(2)请你证明:(a⊕x)(a⊕y)=a⊕(x+y);
(3)若(2⊕x)(2⊕2y)=8且(3⊕x)(3⊕y)=9,请运用(2)中的结论求x、y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,BC=10$\sqrt{3}$,试求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.一天之中,海水的水深是不同的,如图是某港口从0时到12时的水深情况,结合图象回答下列问题:
(1)如图描述了哪两个变量之间的关系?其中自变量是什么?因变量是什么?
(2)大约什么时刻港口的水最深?深度约是多少?
(3)图中A点表示的是什么?
(4)在什么时间范围内,水深在增加?什么时间范围内,水深在减少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.
(1)试判断四边形BEGF的形状并说明理由.
(2)求$\frac{AE}{PG}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,
(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证:AC=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△OA1B1的顶点A1的坐标是(1,$\sqrt{3}$);△B6A7B7的顶点A7的坐标是(13,$\sqrt{3}$);△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,$\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,已知A(-2,3)、B(6,-1),AB交x轴于点C,交y轴于点D.点D的坐标为(0,2).

查看答案和解析>>

同步练习册答案