精英家教网 > 初中数学 > 题目详情
如图,已知抛物线C1的顶点坐标是D(1,4),且经过点C(2,3),又与x轴交于点A、E(点A在点E左边),与y轴交于点B.
(1)抛物线C1的表达式是______;
(2)四边形ABDE的面积等于______;
(3)问:△AOB与△DBE相似吗?并说明你的理由;
(4)设抛物线C1的对称轴与x轴交于点F.另一条抛物线C2经过点E(C2与C1不重合),且顶点为M(a,b),对称轴与x轴交于点G,并且以M、G、E为顶点的三角形与以点D、E、F为顶点的三角形全等,求a、b的值.(只需写出结果,不必写解答过程).
(1)设c1的解析式为y=ax2+bx+c,由图象可知:c1过A(-1,0),B(0,3),C(2,3)三点.
a-b+c=0
c=3
4a+2b+c=3

解得:
a=-1
b=2
c=3

∴抛物线c1的解析式为y=-x2+2x+3.

(2)∵y=-x2+2x+3=-(x-1)2+4.
∴抛物线c1的顶点D的坐标为(1,4);
过D作DF⊥x轴于F,由图象可知:OA=1,OB=3,OF=1,DF=4;
令y=0,则-x2+2x+3=0,
解得x1=-1,x2=3
∴OE=3,则FE=2.
S△ABO=
1
2
OA•OB=
1
2
×1×3=
3
2

S△DFE=
1
2
DF•FE=
1
2
×4×2=4;
S梯形BOFD=
1
2
(BO+DF)•OF=
7
2

∴S四边形ABDE=S△AOB+S梯形BOFD+S△DFE=9(平方单位).

(3)如图,过B作BK⊥DF于K,则BK=OF=1.
DK=DF-OB=4-3=1.
∴BD=
DK2+BK2
=
2

又DE=
DF2+FE2
=2
5

AB=
10
,BE=3
2

在△ABO和△BDE中,
AO=1,BO=3,AB=
10

BD=
2
,BE=3
2
,DE=2
5

AO
BD
=
BO
BE
=
AB
DE
=
1
2

∴△AOB△DBE.

(4)①当EF=EG=2,DF=MG=4,此时M点的坐标可能为(5,4),(5,-4),(1,-4).
②当EF=MG=2,DF=EG=3,此时M点的坐标可能是(7,2),(7,-2),(-1,2),(-1,-2),
综上所述可得出a、b的值.
a1=5
b1=4
a2=5
b2=-4
a3=7
b3=-2
a4=7
b4=2
a5=1
b5=-4
a6=-1
b6=2
a7=-1
b7=-2

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx的图象经过点(2,0)、(-1,6)
(1)求二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
1
2
x2
+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A、B两点的坐标分别为(-3,0)、(0,3),C点在x轴的正半轴上,且到原点的距离为1.点P、Q分别从A、B两点同时出发,以相同的速度分别向x轴、y轴的正方向作匀速直线运动,直线PQ交直线AB于D.
(1)求经过A、B、C三点的抛物线及直线AB解析式;
(2)设AP的长为m,△PBQ的面积为S,求出S关于m的函数关系式.
(3)作PE⊥AB于E,当P、Q运动时,线段DE的长是否改变?若改变请说明理由,若不改变,请求出DE的长;
(4)有一个以AB为边的,且由两个与△AOB全等的三角形拼结而成的平行四边形ABST,试求出T点的坐标(画出图形,直接写出结果,不需求解过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)经过A(-2,-3)、B(3,2)两点,且与x轴相交于M、N两点,当以线段MN为直径的圆的面积最小时,求M、N两点的坐标和四边形AMBN的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,矩形OABC的长OA=
3
,宽OC=1,将△AOC沿AC翻折得△APC.
(1)求∠PCB的度数;
(2)若P,A两点在抛物线y=-
4
3
x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+(m+2)x-3(m-1)交x轴于点A、B(A在B的右边),直线y=(m+1)x-3经过点A.若m<1.
(1)求抛物线和直线的解析式;
(2)直线y=kx(k<0)交直线y=(m+1)x-3于点P,交抛物线y=-x2+(m+2)x-3(m-1)于点M,过M点作x轴垂线,垂足为D,交直线y=(m+1)x-3于点N.问:△PMN能否为等腰三角形?若能,求k的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,对称轴为直线x=
7
2
的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元∕件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

查看答案和解析>>

同步练习册答案