精英家教网 > 初中数学 > 题目详情

填空:已知,(如图)在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BF上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN

证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD(               )
在△ABD和△CBD中
AB=CB  (已知)
________________
BD=BD  (公共边)
∴△ABD≌△CBD(       )
∴___________(                         )
又∵________________________(已知), ∴_____________.

角平分线的定义,∠ABD=∠CBD,SAS,∠ADB=∠CDB,全等三角形的对应角相等,PM⊥AD   PN⊥CD,PM=PN。

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在下面过程中的横线上填空.
已知:如图,BC∥EF,BC=EF,AD=BE.求证:AC=DF.
解:∵BC∥EF
∴∠ABC=∠
 

又∵AD=BE(已知)
∴AB=
 

在△ABC和△DEF中
 =  
 =  
 =  

 
=
 

 
=
 

∴△ABC≌
 

 
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、结合图形填空:
已知,如图,∠BAE+∠AED=180°,∠M=∠N
试说明:∠1=∠2
解:∵∠BAE+∠AED=180°
AB
CD
(同旁内角互补,两直线平行)
∴∠BAE=
∠AEC
(两直线平行,内错角相等)
又∵∠M=∠N (已知)
AN
ME
(内错角相等,两直线平行)
∴∠NAE=
∠MEA
(两直线平行,内错角相等)
∴∠BAE-∠NAE=
∠AEC
-
∠MEA

即∠1=∠2

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意填空:
已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD.
证明:∵AD∥BC(已知)
∴∠1=
∠2(两直线平行,内错角相等),
∠2(两直线平行,内错角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性质)
(等式的性质)

即:∠3=∠4
AB∥CD(内错角相等,两直线平行)
AB∥CD(内错角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:

看图填空:
已知:如图,BC∥EF,AD=BE,BC=EF,试说明 AC=DF
解:∵AD=BE
∴AD+DB=BE+
DB
DB
(等式的性质)
即:AB=
DE
DE

∵BC∥EF
∴∠ABC=∠
DEF
DEF
两直线平行,同位角相等
两直线平行,同位角相等

在△ABC和△DEF中
BC=EF (已知)
(     )(已证)
AB=DE (已证)

∴△ABC≌△DEF(
SAS
SAS

∴AC=DF (
全等三角形的对应边相等
全等三角形的对应边相等
).

查看答案和解析>>

科目:初中数学 来源: 题型:

著名数学教育家G.波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学好数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先观察、计算再填空.
已知:如图,OM平分∠AOB,ON平分∠BOC.
(1)当∠AOC=90°,∠BOC=70°时,∠MON=
45°
45°

(2)当∠AOC=80°,∠BOC=60°时,∠MON=
40°
40°

(3)当∠AOC=70°,∠BOC=50°时,∠MON=
35°
35°

(4)猜想:不论∠AOC和∠BOC的度数是多少,∠MON的度数总等于
∠AOC
∠AOC
度数的一半.

查看答案和解析>>

同步练习册答案