【题目】(1)如图1,四边形中,,点为边的中点,连接并延长交的延长线于点,求证:.(表示面积)
(2)如图2,在中,过边的中点任意作直线,交边于点,交的延长线于点,试比较与的面积,并说明理由.
(3)如图3,在平面直角坐标系中,已知一次函数的图像过点且分别于轴正半轴,轴正半轴交于点、,请问的面积是否存在最小值?若存在,求出此时一次函数关系式;若不存在,请说明理由.
【答案】(1)见解析;(2)S△ABC<S△EBF,理由见解析;(3)存在,y=-2x+8
【解析】
(1)运用△ADE≌△FCE得出S四边形ABCD=S△ABF;
(2)过A作AM∥BC,交EF与D,证明△PAD≌△PCF,根据全等三角形的性质进行比较即可;
(3)由前两问的结论可得出当点P为AB中点时,△AOB的面积最小,根据直角三角形的性质可得OP=OB=OA,设一次函数表达式为y=kx+b,再综合点P在函数图像上,可得方程,解出即可得到一次函数表达式.
解:(1)∵AD∥BC,
∴∠DAE=∠F,∠D=∠FCE.
∵点E为DC边的中点,
∴DE=CE.
∵在△ADE和△FCE中,
,
∴△ADE≌△FCE(AAS),
∴S△ADE=S△FCE,
∴S四边形ABCE+S△ADE=S四边形ABCE+S△FCE,
即S四边形ABCD=S△ABF;
(2)如图2,过A作AD∥BC,交EF与D,
∵P为AC中点,
∴PA=PC,
∵AD∥BC,
∴∠PAD=∠C
在△PAD和△PCF中,
,
∴△PAD≌△PCF(ASA),
∴S△PAD=S△PCF
∴S△PAD+S△EAD>S△PCF
即S△PFC<S△PAE,
则S△ABC<S△EBF;
(3)由(1)(2)结论可知:当点P为AB中点时,△AOB的面积最小,
连接OP,当△AOB的面积最小时,点P是AB中点,
∴OP=OA=OB,
∵AB过点P(2,4),
设AB表达式为y=kx+b,将点P代入得:b=4-2k,
可得点B坐标为(0,4-2k),
则PB=,
OP==,
∴=,
解得:k=-2或2,
∵AB与x轴、y轴交于正半轴,
∴k≠2,
即k=-2,
此时b=8,
则一次函数的关系式为:y=-2x+8.
科目:初中数学 来源: 题型:
【题目】如图,由6个长为2,宽为1的小矩形组成的大矩形网格,小矩形的顶点称为这个矩形网格的格点,由格点构成的几何图形称为格点图形(如:连接2个格点,得到一条格点线段;连接3个格点,得到一个格点三角形;…),请按要求作图(标出所画图形的顶点字母).
(1)画出4种不同于示例的平行格点线段;
(2)画出4种不同的成轴对称的格点三角形,并标出其对称轴所在线段;
(3)画出1个格点正方形,并简要证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】青岛某高中允许高三学生从寄宿、走读两种方式中选择一种就读,今年新高三学生总人数与去年相比增加了6%,其中选择寄宿的学生增加了20%,选择走读的学生减少了15%,若去年高三学生的总数为500人,求今年新高三学生选择寄宿和走读的人数分别是什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象经过A(-1,0)、B(4,5)三点.
(1)求此二次函数的解析式;
(2)当x为何值时,y随x的增大而减小?
(3)当x为何值时,y>0?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知抛物线y= 与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,﹣3),经过点A的射线AM与y轴相交于点E,与抛物线的另一个交点为F,且.
(1)求这条抛物线的表达式,并写出它的对称轴;
(2)求∠FAB的余切值;
(3)点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且∠AFP=∠DAB,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.
(1)求证:四边形OCAD是平行四边形;
(2)填空:①当∠B= 时,四边形OCAD是菱形;
②当∠B= 时,AD与相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.
(1)求证:GF=BF;
(2)若EB=1,BC=4,求AG的长;
(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FOED=ODEF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=ABAC④OE=AD⑤S△APO=,正确的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com