精英家教网 > 初中数学 > 题目详情
如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数(x>O)的图象相交于B、C两点.
(1)若B(1,2),求k1•k2的值;
(2)若AB=BC,则k1•k2的值是否为定值?若是,请求出该定值;若不是,请说明理由.

【答案】分析:(1)分别利用待定系数法求函数解析式求出一次函数解析式与反比例函数解析式,然后代入k1•k2进行计算即可得解;
(2)设出两函数解析式,联立方程组并整理成关于x的一元二次方程,根据AB=BC可知点C的横坐标是点B的横坐标的2倍,再利用根与系数的关系整理得到关于k1、k2的关系式,整理即可得解.
解答:解:(1)∵A(0,3),B(1,2)在一次函数y=k1x+b的图象上,

解得
∵B(1,2)在反比例函数图象上,
=2,
解得k2=2,
所以,k1•k2=(-1)×2=-2;

(2)k1•k2=-2,是定值.
理由如下:∵一次函数的图象过点A(0,3),
∴设一次函数解析式为y=k1x+3,反比例函数解析式为y=
∴k1x+3=
整理得k1x2+3x-k2=0,
∴x1+x2=-,x1•x2=-
∵AB=BC,
∴点C的横坐标是点B的横坐标的2倍,不妨设x2=2x1
∴x1+x2=3x1=-,x1•x2=2x12=-
∴-=(-2
整理得,k1•k2=-2,是定值.
点评:本题是对反比例函数的综合考查,主要利用了待定系数法求函数解析式,根与系数的关系,(2)中根据AB=BC,得到点B、C的坐标的关系从而转化为一元二次方程的根与系数的关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案