精英家教网 > 初中数学 > 题目详情
(2004•黄冈)在矩形ABCD中,M是BC的中点,MA⊥MD,若矩形的周长为48cm,则矩形ABCD的面积为    cm2
【答案】分析:根据矩形的性质求出∠CDM=∠BMA,∠DMC=∠BAM继而求出△DCM∽△MBA.然后求出AB=BM,(AB+2AB)×2=48可求出AB,BC的值.最后可求出矩形ABCD的面积.
解答:解:∠CDM+∠CMD=90°,∠CMD+∠BMA=90°,
∴∠CDM=∠BMA,同理∠DMC=∠BAM.
∴△DCM∽△MBA.

∵DC=AB,BM=CM,
∴AB=BM.
又∵(AB+BC)×2=48,
∴(AB+2AB)×2=48.
∴AB=8,BC=16.
∴矩形ABCD的面积为128.
点评:本题的关键是利用了三角形相似的判定定理,及相似三角形的性质和矩形的性质.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•黄冈)在直角坐标系XOY中,O为坐标原点,A,B,C三点的坐标分别为A(5,0),B(0,4),C(-1,0).点M和点N在x轴上(点M在点N的左边),点N在原点的右边,作MP⊥BN,垂足为P(点P在线段BN上,且点P与点B不重合),直线MP与y轴相交于点G,MG=BN.
(1)求经过A,B,C三点的抛物线的表达式;
(2)求点M的坐标;
(3)设ON=t,△MOG的面积为S,求S与t的函数关系式,并写出自变量t的取值范围;
(4)过点B作直线BK平行于x轴,在直线BK上是否存在点R,使△ORA为等腰三角形?若存在,请直接写出点R的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年某市一中高中保送生考试数学试卷(浙教版)(解析版) 题型:解答题

(2004•黄冈)在直角坐标系XOY中,O为坐标原点,A,B,C三点的坐标分别为A(5,0),B(0,4),C(-1,0).点M和点N在x轴上(点M在点N的左边),点N在原点的右边,作MP⊥BN,垂足为P(点P在线段BN上,且点P与点B不重合),直线MP与y轴相交于点G,MG=BN.
(1)求经过A,B,C三点的抛物线的表达式;
(2)求点M的坐标;
(3)设ON=t,△MOG的面积为S,求S与t的函数关系式,并写出自变量t的取值范围;
(4)过点B作直线BK平行于x轴,在直线BK上是否存在点R,使△ORA为等腰三角形?若存在,请直接写出点R的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年湖北省黄冈市中考数学试卷(解析版) 题型:解答题

(2004•黄冈)在直角坐标系XOY中,O为坐标原点,A,B,C三点的坐标分别为A(5,0),B(0,4),C(-1,0).点M和点N在x轴上(点M在点N的左边),点N在原点的右边,作MP⊥BN,垂足为P(点P在线段BN上,且点P与点B不重合),直线MP与y轴相交于点G,MG=BN.
(1)求经过A,B,C三点的抛物线的表达式;
(2)求点M的坐标;
(3)设ON=t,△MOG的面积为S,求S与t的函数关系式,并写出自变量t的取值范围;
(4)过点B作直线BK平行于x轴,在直线BK上是否存在点R,使△ORA为等腰三角形?若存在,请直接写出点R的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《四边形》(04)(解析版) 题型:填空题

(2004•黄冈)在矩形ABCD中,M是BC的中点,MA⊥MD,若矩形的周长为48cm,则矩形ABCD的面积为    cm2

查看答案和解析>>

同步练习册答案