【题目】如图,已知正方形ABCD,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求证:四边形PMAN是正方形;
(2)求证:EM=BN.
【答案】
(1)证明:∵四边形ABCD是正方形,
∴∠BAD=90°,AC平分∠BAD,
∵PM⊥AD,PN⊥AB,
∴PM=PN,∠PMA=∠PNA=90°,
∴四边形PMAN是矩形,
∵PM=PN,
∴四边形PMAN是正方形
(2)证明:∵四边形PMAN是正方形,
∴PM=PN,∠MPN=90°,
∵∠EPB=90°,
∴∠MPE+∠EPN=∠NPB+∠EPN=90°,
∴∠MPE=∠NPB,
在△EPM和△BPN中,
,
∴△EPM≌△BPN(ASA),
∴EM=BN.
【解析】(1)由四边形ABCD是正方形,易得∠BAD=90°,AC平分∠BAD,又由PM⊥AD,PN⊥AB,即可证得四边形PMAN是正方形;(2)由四边形PMAN是正方形,易证得△EPM≌△BPN,即可证得:EM=BN.
科目:初中数学 来源: 题型:
【题目】第一工程队承包甲工程,晴天需要12天完成,雨天工作效率下降40%,第二工程队承包乙工程,晴天需要15天完成,雨天工作效率下降10%,实际上两个工程队同时开工,同时完工、两工程队各工作了多少天,在施工期间有多少天在下雨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】丁丁做了以下四道计算题:①(﹣1)2010=2010;②0﹣(﹣1)=﹣1;③a2=(﹣a)2 , ④5÷(﹣5)=﹣1,请您帮他检查一下,他一共做对了( )
A.1题
B.2题
C.3题
D.4题
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则, .在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且PA=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是( )
A. (0,0) B. (0,2)
C. (2,-4) D. (-4,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据萧山区劳动保障局统计,到“十一五”末,全区累计参加各类养老保险总人数达到88.2万人,比“十五”末增加37.7万人,参加各类医疗保险总人数达到130.5万人,将数据130.5万用科学记数法(精确到十万位)表示为( )
A.1.3×102
B.1.305×106
C.1.3×106
D.1.3×105
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.
(1)求反比例函数y=的解析式;
(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形ABCD中,对角线AC,BD相交于点O,下列判断中,不能判断四边形ABCD是矩形的是( )
A.AB=CD,AD=BC,∠BAD=90°
B.OA=OB=OC=OD
C.AB∥CD且AB=CD,AC=BD
D.AB∥CD且AB=CD,OA=OC,OB=OD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com