精英家教网 > 初中数学 > 题目详情

如图所示,在⊙O中,数学公式=数学公式,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.
(1)求证:AC2=AB•AF;
(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.

(1)证明:∵=
∴∠ACD=∠ABC,又∠BAC=∠CAF,
∴△ACF∽△ABC,
=,即AC2=AB•AF;

(2)解:连接OA,OC,过O作OE⊥AC,垂足为点E,
如图所示:
∵∠ABC=60°,∴∠AOC=120°,
又∵OA=OC,∴∠AOE=∠COE=×120°=60°,
在Rt△AOE中,OA=2cm,
∴OE=OAcos60°=1cm,
∴AE==cm,
∴AC=2AE=2cm,
则S阴影=S扇形OAC-S△AOC=-×2×1=(-)cm2
分析:(1)由=,利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,利用两对对应角相等的两三角形相似可得出△ACF与△ABC相似,根据相似得比例可得证;
(2)连接OA,OC,利用同弧所对的圆心角等于圆周角的2倍,由∠B为60°,求出∠AOC为120°,过O作OE垂直于AC,垂足为点E,由OA=OC,利用三线合一得到OE为角平分线,可得出∠AOE为60°,在Rt△AOE中,由OA及cos60°的值,利用锐角三角函数定义求出OE的长,在Rt△AOE中,利用勾股定理求出AE的长,进而求出AC的长,由扇形AOC的面积-△AOC的面积表示出阴影部分的面积,利用扇形的面积公式及三角形的面积公式即可求出阴影部分的面积.
点评:此题考查了扇形面积的求法,涉及的知识有:相似三角形的判定与性质,弧、圆心角及弦之间的关系,等腰三角形的性质,勾股定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在?ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF交于点M,连接CF,DE交于点N,求证:MN∥AD且MN=
12
AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠C=90°,D是AC边上一点,且AD=DB=5,CD=3,求tan∠CBD和sinA.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,在?ABCD中,E,F分别AB,CD的中点,连接DE,EF,BF,则图中平行四边形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图所示,在△ABC中画出长宽之比为2:1的矩形,使长边在BC上.(注:保留画图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,已知D是BC边上的点,O为△ABD的外接圆圆心,△ACD的外接圆与△AOB的外接圆相交于A,E两点.求证:OE⊥EC.

查看答案和解析>>

同步练习册答案