精英家教网 > 初中数学 > 题目详情
(2009•永州)如图,在平面直角坐标系内,O为原点,点A的坐标为(-3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.
(1)求B点的坐标;
(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.

【答案】分析:(1)由于∠AOB=90°,故AB是直径,且AB=5在Rt△AOB中,由勾股定理可得BO===4,则B点的坐标为(0,-4);
(2)由于BD是⊙C的切线,CB是⊙C的半径,故BD⊥AB,即∠ABD=90°,有∠DAB+∠ADB=90°,又因为∠BDO+∠OBD=90°,所以∠DAB=∠DBO,由于∠AOB=∠BOD=90°,故△ABO∽△BDO,=,OD===,D的坐标为(,0),把B,D两点坐标代入一次函数的解析式便可求出k,b的值,从而求出其解析式.
解答:解:(1)∵∠AOB=90°,
∴AB是直径,且AB=5,
在Rt△AOB中,由勾股定理可得BO===4,
∴B点的坐标为(0,-4);

(2)∵BD是⊙C的切线,CB是⊙C的半径,
∴BD⊥AB,即∠ABD=90°,
∴∠DAB+∠ADB=90°
又∵∠BDO+∠OBD=90°,
∴∠DAB=∠DBO,
∵∠AOB=∠BOD=90°,
∴△ABO∽△BDO,
=
∴OD===
∴D的坐标为(,0)
设直线BD的解析式为y=kx+b(k≠0,k、b为常数),
则有,∴
∴直线BD的解析式为y=x-4.
点评:此题较复杂,把一次函数与圆的相关知识相结合,利用勾股定理及相似三角形的性质解答,是中学阶段的重点内容.
练习册系列答案
相关习题

科目:初中数学 来源:2011年3月黑龙江省大庆市第六十三中学月考数学试卷(解析版) 题型:解答题

(2009•永州)如图,在平面直角坐标系内,O为原点,点A的坐标为(-3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.
(1)求B点的坐标;
(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2009•永州)如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.
(1)求该二次函数的解析式;
(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;
(3)求△PBC面积的最大值,并求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2009年湖南省永州市中考数学试卷(解析版) 题型:解答题

(2009•永州)如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.
(1)求该二次函数的解析式;
(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;
(3)求△PBC面积的最大值,并求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2009年湖南省永州市中考数学试卷(解析版) 题型:解答题

(2009•永州)如图,在平面直角坐标系内,O为原点,点A的坐标为(-3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.
(1)求B点的坐标;
(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.

查看答案和解析>>

同步练习册答案