精英家教网 > 初中数学 > 题目详情

【题目】ABC在直角坐标系内的位置如图所示.

1)请直接写出ABC的坐标;

2)请在这个坐标系内画出A1B1C1,使A1B1C1ABC关于y轴对称,并写出B1的坐标;

3)计算A1B1C1面积.

【答案】(1)A03);B-44);C-21);(2B144),见详解;(35

【解析】

1)观察平面直角坐标系,根据点与坐标系的关系,即可求得ABC的坐标;
2)根据关于y轴对称的图形的特点,首先求得各对称点的坐标,继而画出△A1B1C1

3)利用割补法求解可得.

解:(1A03);B-44);C-21);

2)如图:B1的坐标为:(44);

(3)A1B1C1的面积为4×3-×2×2-×2×3-×1×4=5.

故答案为:(1)A03);B-44);C-21);(2B144),见详解;(35

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2,则下列条件中,不能使△ABC≌△DBC成立的是 (  )

A. ABCD B. ACBD C. A=∠D D. ABC=∠DCB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒。

(1)t为何值时,CP把△ABC的周长分成相等的两部分。

(2)t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;

(3)t为何值时,△BCP为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;

(2)把t=2代入(1)中二次函数解析式即可.

详解:(1)v=at2的图象经过点(1,2),

a=2.

∴二次函数的解析式为:v=2t2,(0≤t≤2);

设反比例函数的解析式为v=

由题意知,图象经过点(2,8),

k=16,

∴反比例函数的解析式为v=(2<t≤5);

(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,

∴弹珠在轨道上行驶的最大速度在2秒末,为8/分.

点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.

型】解答
束】
24

【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在ABC中,AB=AC,BAC=m°,点E为ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求EAF的度数(用含有m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学校开展的数学活动课上,小明和小刚制作了一个正三楼锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下每人投掷三棱锥两次,并记录底面的数字,如果两次所掷数字的和为单数,那么算小明赢,如果两欢所掷数字的和为偶数,那么算小明赢;

(1)请用列表或者面树状围的方法表示上述游戏中的所有可能结果.

(2)请分别隶出小明和小刚能赢的概率,并判新游戏的公平性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线x轴交于点A,与y轴交于点C.抛物线经过AC两点,且与x轴交于另一点BB在点A右侧

1求抛物线的解析式及点B坐标;

2若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;

3试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC,AC⊥CB,AC=15,AB=25,D为斜边上动点。

(1)如图,过点DDE⊥ABCB于点E,连接AE,AE平分∠CAB时,求CE;

(2)如图在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

材料一:两个含有二次根式的非零代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式.

例如:,我们称的一个有理化因式是的一个有理化因式是.

材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.

例如:

请你仿照材料中的方法探索并解决下列问题:

(1)的有理化因式为______的有理化因式为______.(均写出一个即可)

(2)将下列各式分母有理化(要求写出变形过程)

.

.

(3)请从下列AB两题中任选一题作答,我选择题.

A计算:的结果为______.

B计算:的结果为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.

(1)求此时货轮到小岛B的距离.

(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.

查看答案和解析>>

同步练习册答案