精英家教网 > 初中数学 > 题目详情
16.解方程:x2-|x-1|-1=0.

分析 分类讨论::(1)当x-1≥0时,原方程化为x2-x=0,(2)当x-1<0时,原方程化为x2+x-2=0,然后利用因式分解法分别解两个一元二次方程,再利用x的范围确定原方程的解.

解答 解:(1)当x-1≥0时,即x≥1 时,原方程化为x2-x=0,
x(x-1)=0,
解得x1=0(舍去),x2=1;
(2)当x-1<0时,即x<1时,原方程化为x2+x-2=0,
(x+2)(x-1)=0,
解得x1=1(舍去),x2=-2,
所以原方程的解为x=1或-2.

点评 本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.下列命题中,错误的是(  )
A.矩形的对角线互相平分且相等
B.等腰三角形底边上的中点到两腰的距离相等
C.等腰梯形的两条对角线相等
D.对角线互相垂直的四边形是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.抛物线y=ax2+bx+c(a≠0)交x轴于A、B两点,交y轴于点C,且满足OA=OC=$\frac{5}{2}$OB,△ABC的面积为$\frac{15}{2}$.
(1)求抛物线的解析式;
(2)点E是直线AC上方第二象限内一点,点F在AC上,且EF⊥AC,设点E的横坐标为t,EF的长为d,tan∠CAE=$\frac{1}{2}$,用含t的式子表示d;
(3)在(2)的条件下,连接OE,交抛物线于点H,点Q在x轴上,∠HQA+∠CAE=45°,AE=QH,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,∠AOC=∠COD=∠BOD,则OD平分∠BOC,OC平分∠AOD,∠AOB=$\frac{3}{2}$∠ADC=$\frac{3}{2}$∠BOC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某公司决定利用仅有的349个甲种部件和295个乙种部件组装A、B两种型号的简易板房共50套捐赠给灾区.已知组装一套A型号简易板房需要甲种部件8个和乙种部件4个,组装一套B型号简易板房需要甲种部件5个和乙种部件9个.该公司在组装A、B两种型号的简易板房时,共有多少种组装方案?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.把下列各式因式分解:
①(x-2y)2+8xy; 
②2a2(a+b)-8b2(a+b)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.用两块完全相同的长方体搭成如图所示的几何体,从正面看得到的图形是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.【知识经验】
我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有很多,下面我们一起再学习三种因式分解的方法吧.
【学习拓展】
(1)分组分解法:将-个多项式适当分组后,可提公因式或运用公式继续分解因式的方法.
例x2-2xy+y2+4x-4y=(x2-2xy+y2)+(4x-4y)=(x-y)(x-y+4).
分组分解法中分组的目的是:分组后小组内及小组之间能提公因式或运用公式.
(2)十字相乘法
例 分解因式:2x2-x-6.
分析:二次项系数2分解成2与1的积;常数项-6分解成-l与6(或-6与1,
-2与3,-3与2)的积,但只有当-2与3按如图1所示方式排列,然后交叉相乘的和正好等于一次项系数-l.
所以:2x2-x-6=-(2x+3)(x-2).
小结:用十字相乘法分解形如ax2+bx+c时,二次项系数a分解成    a1与a2的积,分别写在十字交叉线的左上角和左下角;常数项c    分解成c1与c2的积,分别写在十字交叉线的右上角和右下角,把al,a2,cl,c2按如图2所示方式排列,当且仅当alc2+a2cl=6(一次项系数)时,ax2+bx+c可分解因式.即ax2+bx+c=(alx+c1)(a2x+c2).
(3)拆项法:将一个多项式的某一项拆成两项后,重新分组,可提公因式或运用公式继续分解的方法.
例 3x3+7x2-4
=3x3-2x2+9x2-4(拆项)
=(3x3-2x2)+(9x2-4)(分组分解)
=x2(3x-2)+(3x+2)(3x-2)
=(3x-2)(x2+3x+2)(十字相乘法)
=(3x-2)(x+1)(x+2)(达到每一个多项式因式不能再分解为止)
【学以致用】利用上面的方法将下列各式分解因式:
(1)a3+2a2+4a+8;    (2)3x2+2x-5;    (3)x3+3x2-4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.已知正n边形的一个内角为144°,则边数n的值是(  )
A.10B.9C.8D.6

查看答案和解析>>

同步练习册答案