精英家教网 > 初中数学 > 题目详情
已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.
(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;
②当CE=1时,写出AP的长.(不必写解答过程)

【答案】分析:(1)当∠BPC=∠A时,∠A+∠APB+∠ABP=180°,而∠APB+∠BPC+∠DPC=180°,因此∠ABP=∠DPC,此时三角形APB与三角形DPC相似,那么可得出关于AP,PD,AB,CD的比例关系式,AB,CD的值题中已经告诉,可以先用AP表示出PD,然后代入上面得出的比例关系式中求出AP的长.
(2)①与(1)的方法类似,只不过把DC换成了DQ,那么只要用DC+CQ就能表示出DQ了.然后按得出的关于AB,AP,PD,DQ的比例关系式,得出x,y的函数关系式.
②和①的方法类似,但是要多一步,要先通过平行得出三角形PDQ和CEQ相似,根据CE的长,用AP表示出PD,然后根据PD,DQ,QC,CE的比例关系用AP表示出DQ,然后按①的步骤进行求解即可.
解答:解:(1)∵ABCD是梯形,AD∥BC,AB=DC.
∴∠A=∠D
∵∠ABP+∠APB+∠A=180°,∠APB+∠DPC+∠BPC=180°,∠BPC=∠A
∴∠ABP=∠DPC,
∴△ABP∽△DPC
,即:
解得:AP=1或AP=4.

(2)①由(1)可知:△ABP∽△DPQ
,即:
(1<x<4).  
②当CE=1时,AP=2或
点评:本题结合梯形的性质考查二次函数的综合应用,利用相似三角形得出线段间的比例关系是求解的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2
3
,AE为梯形的高,且BE=1,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.
(1)求证:AE⊥BD;    (2)若AD=4,BC=14,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知梯形ABCD中,AD∥BC,AB=CD,∠B=45°,它的高为2cm,中位线长为5cm,则上底AD等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,∠B=40°,∠C=70°,AD=3,BC=7,则腰AB=
4
4

查看答案和解析>>

同步练习册答案