精英家教网 > 初中数学 > 题目详情
x≠3
x≠3
时,分式
3x+1
2x-6
有意义;当
x=-
1
3
x=-
1
3
时,分式
3x+1
2x-6
的值是零.
分析:根据分式有意义的条件:分母不等于0;分式的值为零的条件:分子等于0,分母不等于0,即可求得.
解答:解:根据题意得:2x-6≠0,解得:x≠3;

根据题意得:3x+1=0且2x-6≠0,
解得:x=-
1
3

故答案是:x≠3,x=-
1
3
点评:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,把双曲线C1:y=
3x
(虚线部分)沿x轴的正方向、向右平移2个单位,得一个新的双曲线C2(实精英家教网线部分),对于新的双曲线C2,下列结论:
①双曲线C2是中心对称图形,其对称中心是(2,0).
②双曲线C2仍是轴对称图形,它有两条对称轴.
③双曲线C2与y轴有交点,与x轴也有交点.
④当x<2时,双曲线C2中的一支,y的值随着x值的增大而减小.
其中正确结论的序号是
 
.(多填或错填得0分,少填则酌情给分.)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永春县质检)如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,
3
),点D是线段BC上的动点(与B、C不重合),过点D作直线l:y=-
3
x+b
交线段OA于点E.
(1)直接写出矩形OABC的面积(用含a的代数式表示);
(2)已知a=3,当直线l将矩形OABC分成周长相等的两部分时
①求b的值;
②梯形ABDE的内部有一点P,当⊙P与AB、AE、ED都相切时,求⊙P的半径.
(3)已知a=5,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,设CD=k,当k满足什么条件时,使矩形OABC和四边形O1A1B1C1的重叠部分的面积为定值,并求出该定值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•赤峰)阅读材料:
(1)对于任意两个数a、b的大小比较,有下面的方法:
当a-b>0时,一定有a>b;
当a-b=0时,一定有a=b;
当a-b<0时,一定有a<b.
反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.
(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:
∵a2-b2=(a+b)(a-b),a+b>0
∴(a2-b2)与(a-b)的符号相同
当a2-b2>0时,a-b>0,得a>b
当a2-b2=0时,a-b=0,得a=b
当a2-b2<0时,a-b<0,得a<b
解决下列实际问题:
(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:
①W1=
3x+7y
3x+7y
(用x、y的式子表示)
W2=
2x+8y
2x+8y
(用x、y的式子表示)
②请你分析谁用的纸面积最大.
(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:

方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.
方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.
①在方案一中,a1=
(3+x)
(3+x)
km(用含x的式子表示);
②在方案二中,a2=
x2+48
x2+48
km(用含x的式子表示);
③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料并解决有关问题:我们知道:|x|=
-x(当x<0时)
0(当x=0时)
x(当x>0时)
,现在我们可以用这一结论来解含有绝对值的方程.例如,解方程|x+1|+|2x-3|=8时,可令x+1=0和2x-3=0,分别求得x=-1和
3
2
,(称-1和
3
2
分别为|x+1|和|2x-3|的零点值),在实数范围内,零点值x=-1和可将全体实数分成不重复且不遗漏的如下3种情况:①x<-1②-1≤x<
3
2
x≥
3
2
,从而解方程|x+1|+|2x-3|=8可分以下三种情况:
①当x<-1时,原方程可化为-(x+1)-(2x-3)=8,解得x=-2.
②当-1≤x<
3
2
时,原方程可化为(x+1)-(2x-3)=8,解得x=-4,但不符合-1≤x<
3
2
,故舍去.
③当x≥
3
2
时,原方程可化为(x+1)+(2x-3)=8,解得x=
10
3

综上所述,方程|x+1|+|2x-3|=8的解为,x=-2和x=
10
3

通过以上阅读,请你解决以下问题:
(1)分别求出|x+2|和|3x-1|的零点值.
(2)解方程|x+2|+|3x-1|=9.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题10分)求下列代数式的值

1.(1)若a=—2,b=—3,则代数式(a+b)2—(a—b)2=___________

2.(2)当x—y=3时,代数式2(x—y)2+3x—3y+1=___________

3.(3)化简并求值:已知三个有理数的积是负数,其和为正数;当时,求代数式的值。

 

 

查看答案和解析>>

同步练习册答案