精英家教网 > 初中数学 > 题目详情

在梯形ABCD中,AD∥BC,AD=AB=1,BC=2,∠A=90°.(如图1)
(1)试求∠C的度数;
(2)若E、F分别为边AD、CD上的两个动点(不与端点A、D、C重合),且始终保持∠EBF=45°,BD与EF交于点P.(如图2)
①求证:△BDE∽△BCF;
②试判断△BEF的形状(从边、角两个方面考虑),并加以说明;
③设AE=x,DP=y,试求y关于x的函数解析式,并写出定义域.

解:(1)作DE⊥BC,垂足为E,
在四边形ABHD中,AD∥BC,AD=AB=1,∠A=90°,
则四边形ABHD为正方形,
又在△CDH中,∠DHC=90°,DH=AB=1,CH=BC-BH=1,


(2)①∵四边形ABHD为正方形,
∴∠CBD=45°,∠ADB=45°,
又∵∠EBF=45°,
∴∠DBE=∠CBF
又∵∠BDE=∠C=45°,
∴△BDE∽△BCF.

②△BEF是等腰直角三角形,
∵△BDE∽△BCF,

又∵∠EBF=∠DBC=45°,
∴△EBF∽△DBC,
又在△DBC中,∠DBC=∠C=45°,为等腰直角三角形,
∴△BEF是等腰直角三角形.
③延长EF交BC的延长线于点Q,

易知
∵△BDE∽△BCF,



又∵



,(0<x<1).
分析:(1)要求∠C的度数,只需要将直角梯形转化为矩形和一个直角三角形就可以解决;
(2)①根据两角对应相等的两三角形相似很容易得出结论.
②是一个结论猜想试题,根据条件易得出△BEF∽△BDC,从而得出△BEF为等腰直角三角形.
③要求函数的解析式需要多次利用三角形相似转化AE与DP的关系,从而将y用含x的代数式代换出来.
点评:本题考查了相似三角形的判定与性质,等腰直角三角形性质,矩形的性质,直角梯形的性质及辅助线的作法,还渗透了函数的解析式.难度大综合性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,则∠ADC=
140°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AB∥CD,E是AB边上的点,给出下面三个论断:①AD=BC;②DE=CE;③AE=BE.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断作为结论,填入“求证”栏中,使之成为一个正确的命题,并证明之.
已知:如图,在梯形ABCD中,AB∥CD,E是AB边上的点,
AD=BC,AE=BE
AD=BC,AE=BE

求证:
DE=CE
DE=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.
(1)试说明∠ABD=∠CBD.
(2)若∠C=2∠E,试说明AB=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,则∠BDC的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,点P是下底BC边上的一个动点,从B向C以2cm/s的速度运动,到达点C时停止运动,设运动的时间为t(s).
(1)求BC的长;
(2)当t为何值时,四边形APCD是等腰梯形;
(3)当t为何值时,以A、B、P为顶点的三角形是等腰三角形.

查看答案和解析>>

同步练习册答案