【题目】已知AB是⊙O的直径,半径OC垂直AB,D为弧AC上任意一点,E为弦BD上一点,且BE=AD
(1)试判断△CDE的形状,并加以证明.
(2)若∠ABD=15°,AO=4,求DE的长.
【答案】(1)△CDE为等腰直角三角形,证明详见解析;(2).
【解析】
(1)由条件可证明△ADC≌△BEC,则可得到CD=CE,结合AB为直径可证明∠DCE=90°,可判断△CDE为等腰直角三角形;
(2)由条件可证明△COD为等边三角形,则可求得CD=4,利用勾股定理可求得DE的长.
(1)△CDE为等腰直角三角形,
证明如下:
如图1,连接AC、BC,
则∠DAC=∠DBC,
∵AB为直径,CO⊥AB,
∴△ABC为等腰直角三角形,
∴AC=BC,
在△ADC和△BEC中
∴△ADC≌△BEC(SAS),
∴CD=CE,∠DCA=∠BCE,
∵∠ACB=90°,
∴∠ACE+∠BCE=90°,
∴∠DCA+∠ACE=90°,即∠DCE=90°,
∴△CDE为等腰直角三角形;
(2)如图2,连接OD,
则∠AOD=2∠ABD=2×15°=30°,
∵∠AOC=90°,
∴∠DOC=60°,且OD=OC=OA=4,
∴△OCD为等边三角形,
∴CD=CE=OA=4,
在Rt△CDE中,由勾股定理可得.
科目:初中数学 来源: 题型:
【题目】如图,将 进行折叠,使得点 与点 重合,折痕分别与边 , 交于点 ,,点 关于直线 的对称点为点 .
(1)画出直线 和点 ;
(2)连接 ,,若 ,,则 ;
(3)若 ,,则 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在反比例函数y=(x>0)的图像上,点B在反比例函数y=(x>0)的图像上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为( )
A. 10 B. 12 C. 14 D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=12米,MA⊥AB于点A,MA=6米,射线BD⊥AB于点B,点P从点B出发沿BA方向往点A运动,每秒走1米,点Q从点B出发沿BD方向运动,每秒走2米,若点P、Q同时从点B出发,出发t秒后,在线段MA上有一点C,使由点C、A、P组成的三角形与△PBQ全等,则t的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,∠B=90°,点D为直线BC上一个动点(不与B,C重合),连结AD.将线段AD绕点D按顺吋针方向旋转90°得到线段DE,连结EC.
(1)如图1,点D在线段BC上,依题意画图得到图2.
①求证:∠BAD=∠EDC;
②方方同学通过观察、测量得出结论:在点D运动的过程中,总有∠DCE=135°.方方的主要思路有以下几个:
思路一:在AB上取一点F使得BF=BD,要证∠DCE=135°,只需证△ADF≌△DEC.
思路二:以点D为圆心,DC为半径画弧交AC于点F,要证∠DCE=135°,只需证△AFD≌△ECD.
思路三:过点E作BC所在直线的垂线段EF,要证∠DCE=135°,只需证EF=CF.
……
请你参考井选择其中一个思路,证明∠DCE=135°;
(2)如果点D在线段CB的延长线上运动,利用图3画图分析,∠DCE的度数还是确定的值吗?如果是,请写出∠DCE的度数并说明理由;如果不是,也请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象经过点,对称轴为直线,一次函数的图象经过点,交轴于点,交抛物线于另一点,点、位于点的同侧.
求抛物线的解析式;
若,求一次函数的解析式;
在的条件下,当时,抛物线的对称轴上是否存在点,使得同时与轴和直线都相切,如果存在,请求出点的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com