精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;
(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

【答案】
(1)

解:∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,

令x=0,得y=3,

∴C(0,3),

令y=0,得x=3,

∴B(3,0),

∵经过B、C两点的抛物线y=x2+bx+c

解得

∴抛物线解析式为y=x2﹣4x+3;


(2)

解:由(1),得A(1,0),连接BP,

∵∠CBA=∠ABP=45°,

∵抛物线解析式为y=x2﹣4x+3;

∴P(2,﹣1),

∵A(1,0),B(3,0),C(0,3),

∴BA=2,BC=3 ,BP=

当△ABC∽△PBQ时,

∴BQ=3,

∴Q(0,0),

当△ABC∽△QBP时,

∴BQ=

∴Q( ,0),

∴Q点的坐标为(0,0)或( ,0).


【解析】(1)先确定出点B,C坐标,再用待定系数法求函数解析式;(2)先求出BA=2,BC=3 ,BP= ,然后分两种情况①由△ABC∽△PBQ,得到 ,求出BQ,②由△ABC∽△QBP得 ,求出BQ,即可.
【考点精析】本题主要考查了二次函数的图象的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,PQ分别是BCAC上的点,作PR⊥ABPS⊥AC,垂足分别是RS,若AQ=PQPR=PS,下面四个结论:①AS=AR②QP∥AR③△BRP≌△QSP④AP垂直平分RS.其中正确结论的序号是 (请将所有正确结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2

(1)求证:AC是⊙O的切线;
(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为( )

A.(
B.(2,2)
C.( ,2)
D.(2,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知反比例函数y= 的图象经过点A,点O是坐标原点,OA=2且OA与x轴的夹角是60°.

(1)试确定此反比例函数的解析式;
(2)将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是( )

A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(2.5,0.5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算与解方程
(1)计算: tan60°+|﹣3sin30°|﹣cos245°.
(2)解方程:x2+4x+1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知A(1,2),B(3,1),C(﹣2,﹣1).

(1)在图中作出△ABC关于y轴对称的△A1B1C1

(2)直接写出点A1,B1,C1的坐标.

A1 B1  , C1   ;

(3)请你求出△A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

(1)出发2秒后,求PQ的长;

(2)当点Q在边BC上运动时,出发几秒钟后,PQB能形成等腰三角形?

(3)当点Q在边CA上运动时,求能使BCQ成为等腰三角形的运动时间.

查看答案和解析>>

同步练习册答案