精英家教网 > 初中数学 > 题目详情

解答:

若am=3,an=5,求:①am-n的值;②a3m-2n的值.

答案:
解析:

;②


练习册系列答案
相关习题

科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:044

阅读下面的解题过程,然后解答后面的问题.

  题目:如图(1),已知正方形ABCD中,点M是AB的中点,点E是AB延长线上的一点,MN⊥DM交∠CBE的平分线BN于点N.试说明MD=MN.

  解:在AD上取一点F,使AF=AM,连结MF.

  因为ABCD是正方形,

  所以DF=MB,∠1+∠AMD=90°.

  因为DM⊥MN,

  所以∠AMD+∠2=90°.

  所以∠1=∠2.

  因为BN平分∠CBE,

  所以∠MBN=135°=∠DFM.

  所以△DFM≌△MBN.

  所以DM=MN.

(1)在上述说理过程中,“点M是AB的中点”这个条件没有用到,若将这个条件改为“点M是AB上的任意一点”,或“点M是AB延长线上的任意一点”,或“点M是BA延长线上的任意一点”,则结论“DM=MN”还成立吗?请说明理由;

(2)如图(2),在正三角形ABC中,若AE=CD,则∠BFE=60°;如图(3),在正方形ABCD中,若DE=CF,则∠AGF=90°.这里的两个结论“∠BFE=60°”和“∠AGF=90,分别与题目的背景条件“正三角形ABC”和“正方形ABCD”有关.你能否改编一道题目,改变上述题目的背景“正方形ABCD”,并相应改变条件“MN⊥DM”,而其余条件与结论不变?请说明所编题目的正确性.

查看答案和解析>>

科目:初中数学 来源:2008年四川省攀枝花市初中毕业升学统一考试、数学试卷 题型:044

先阅读下列材料,再解答后面的问题

材料:一般地,n个相同的因数a相乘:.如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).

问题:(1)计算以下各对数的值:

log24=________  log216=________  log264=________.

(2)观察(1)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?

(3)由(2)的结果,你能归纳出一个一般性的结论吗?

logaM+logaN=________(a>0且a≠1,M>0,N>0)

根据幂的运算法则:an·am=an+m以及对数的含义证明上述结论.

查看答案和解析>>

科目:初中数学 来源:2011届河北省蠡县中考模拟考试数学试卷(带解析) 题型:解答题

如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是________________;
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年河北省蠡县中考模拟考试数学试卷(解析版) 题型:解答题

如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:

(1)若AB=AC,请探究下列数量关系:

①在图②中,BD与CE的数量关系是________________;

②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;

(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.

 

查看答案和解析>>

同步练习册答案