【题目】如图,平行四边形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD与∠ABC的平分线AE、BF交于点P,连接PD,则tan∠ADP的值为( )
A.B.C.D.
【答案】A
【解析】
作PH⊥AD于H,可得四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.
解:作PH⊥AD于H,
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠DAE=∠AEB.
∵AE是角平分线,
∴∠DAE=∠BAE.
∴∠BAE=∠AEB.
∴AB=BE.
同理AB=AF.
∴AF=BE.
∴四边形ABEF是平行四边形.
∵AB=BE,
∴四边形ABEF是菱形.
∵∠ABC=60°,AB=4,
∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
∴AP=AB=2,
∴PH=,DH=5,
∴tan∠ADP==.
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.
(1)求的值;
(2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3与x轴交于A(﹣1,0)和B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点,分别连接AC、CD、AD.
(1)求抛物线的函数解析式以及顶点D的坐标;
(2)在抛物线上取一点P(不与点C重合)、并分别连接PA、PD,当△PAD的面积与△ACD的面积相等时,求点P的坐标:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,CA=CB,∠ACB=α(0°<α<180°).点P是平面内不与A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,CP.点M是AB的中点,点N是AD的中点.
(1)问题发现:如图1,当α=60°时,的值是 ,直线MN与直线PC相交所成的较小角的度数是 .
(2)类比探究:如图2,当α=120°时,请写出的值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.
(3)解决问题:如图3,当α=90°时,若点E是CB的中点,点P在直线ME上,请直接写出点B,P,D在同一条直线上时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(题文)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:
(1)本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;
(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;
(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润(元/件) | B型利润(元/件) | |
甲店 | 180 | 150 |
乙店 | 120 | 110 |
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并写出x的取值范围;
(2)若要求总利润超过14960元,有多少种不同分配方案?请列出具体方案;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润,甲店的B型产品以及乙店的A,B型产品的每件利润不变,该公司如何设计分配方案,使总利润达到最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,BC=+,点D为边AB上一点,连接CD.将△ACD沿直线CD翻折至△ECD,CE恰好过AB的中点F.连接AE交CD的延长线于点H,若∠ACD=15°,则DH的长为( )
A.B.C.D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=90°,D为平面内的一点.
(1)如图1,当点D在边BC上时,且∠BAD=30°,求证:AD=BD.
(2)如图2,当点D在△ABC的外部,且满足∠BDC﹣∠ADC=45°,求证:BD=AD.
(3)如图3,若AB=4,当D、E分别为AB、AC的中点,把△DAE绕A点顺时针旋转,设旋转角为α(0<α≤180°),直线BD与CE的交点为P,连接PA,直接写出△PAC面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在口ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE= CD
(1)求证:△ABF∽△CEB
(2)若△DEF的面积为2,求△CEB的面积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com