精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,直线y=-2x+3与x、y轴分别相交于A、C两点.抛物线y=x2+bx+c过点C且与此直线在第二象限交于另一点B.若AC:CB=1:2,那么抛物线的顶点坐标为
 
分析:根据直线方程可求解A、C点的坐标,再根据AC:CB=1:2,可求得B点的坐标,分别把B、C点的坐标代入抛物线即可求得解析式,进而解得顶点坐标.
解答:解:∵直线y=-2x+3与x、y轴分别相交于A、C两点,
∴A点的坐标为:(
3
2
,0),C点的坐标为:(0,3),
∵AC:CB=1:2,
∴OA:|xB|=1:2,
∴|xB|=3,
又交点在第二象限,
∴xB=-3,
代入直线解析式得,y=9,
∴点B的坐标为:(-3,9),
把B、C的坐标分别代入抛物线解析式得:
9=9-3b+c,①
3=c,②
由①②解得:
b=1,c=3,
∴抛物线解析式为:y=x2+x+3=(x+
1
2
2+
11
4

∴顶点坐标为:(-
1
2
11
4
).
点评:本题考查了二次函数的性质,一次函数上点的坐标性质,是综合题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

3、如图所示,直线AB,CD相交于O,所形成的∠1,∠2,∠3,∠4中,下列分类不同于其它三个的(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连接EB,过O作OP⊥EB于P,连接CP,过P作PF⊥PC交射线OS于F.

(1)求证:△POC∽△PBF.
(2)当OE=1,OE=2时,BF的长分别为多少?当OE=n时,BF=
4
n
4
n

(3)当OE=1时,S△EBF=S1;OE=2时,S△EBF=S2;…,OE=n时,S△EBF=Sn.则S1+S2+…+Sn=
2n
2n
.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线a、b被直线c所截,现给出下列四种条件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8,其中能判断是a∥b的条件的序号是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,直线AB∥CD,CO⊥OD于O点,并且∠1=40度.则∠D的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

将一张矩形纸板沿对角线剪开得到两个三角形,△ABC与△DEF,∠B=∠E=90°,如图①所示.
(1)将△ABC与△DEF按如图②方式摆放,使点B与E重合,点C、B、E、F在同一条直线上,边AB与DE重合,连接CD、FA,并延长FA交CD于G.试证:FA⊥CD
(2)在(1)所述基础上,将纸板△ACB沿直线CF向右平移,并剪去ED右侧部分,此时CA与ED的交点为A1,连接CD、FA1,并延长FA1交CD于G,如图③所示,直线FA1和CD的位置关系是
 
(直接写出)
(3)在(2)所述基础上,将纸板△A1CE绕点E逆时针旋转α度(0°<α<90°)至如图④所示位置,连接CD、FA1,CD与FA1交于点G,试判断FA1与CD的位置关系?并说明理由.
精英家教网

查看答案和解析>>

同步练习册答案