精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2的图象与一次函数y=mx+4的图象相交于点A(-2,2)B(n,8)两点.

(1)求二次函数y=ax2与一次函数y=mx+4的表达式;

(2)试判断AOB的形状,并说明理由.

【答案】(1) y=x2y=x+4;(2)AOB是直角三角形.理由见解析

【解析】

(1)把A(-2,2)代入y=ax2求得a的值,即可得二次函数的解析式;把A(-2,2)代入y=mx+4求得m的值,即可得一次函数的解析式;(2)AOB是直角三角形,求得点B的坐标,根据勾股定理求得OA2OB2AB2的值,再根据勾股定理的逆定理即可判定△AOB的形状.

(1)y=ax2的图象经过点(-2,2),2=4a,a=,

∴二次函数的表达式为y=x2;

∵一次函数y=mx+4的图象经过点(-2,2),2=-2m+4,m=1,

∴一次函数的表达式是y=x+4.

(2)AOB是直角三角形.

理由:∵点B(n,8)在一次函数y=x+4的图象上,

8=n+4,n=4,

B坐标为(4,8),

OA2=(-2-0)2+(2-0)2=8,OB2=(4-0)2+(8-0)2=80,AB2=(8-2)2+(4+2)2=72,

OA2+AB2=8+72=80=OB2,

AOB为直角三角形,且∠OAB=90°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示ABDEACDFAC=DF下列条件中不能判断ABC≌△DEF的是(  )

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为4的⊙O中,CD为直径,AB⊥CD且过半径OD的中点,点E为⊙O上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( )

A. π B. π C. π D. π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线上部分点的横坐标x,纵坐标y的对应值如下表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

从上表可知,下列说法正确的个数是( )

①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);

③抛物线的对称轴是x=1;④在对称轴左侧yx增大而增大.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,abc,b2-4ac,2a+b,a+b+c这四个式子中,值为正数的有( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰ABC中,AB=ACBAC=120°ADBC于点D,点PBA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论: ①∠APO+DCO=30°②△OPC是等边三角形;③AC=AO+APSABC=S四边形AOCP其中正确的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线ABx轴交于点Am0),与y轴交于点B0n),且mn满足:(m+n2+|n6|0

1)求:①mn的值;②SABO的值;

2DOA延长线上一动点,以BD为直角边作等腰直角BDE,连接EA,求直线EAy轴交点F的坐标.

3)如图2,点Ey轴正半轴上一点,且∠OAE30°AF平分∠OAE,点M是射线AF上一动点,点N是线段OA上一动点,试求OM+MN的最小值(图1与图2中点A的坐标相同).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).

(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);

点A关于x轴对称的点坐标为   

点B关于y轴对称的点坐标为   

点C关于原点对称的点坐标为   

(2)若网格上的每个小正方形的边长为1,则△ABC的面积是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.

(1)甲、乙两种书柜每个的价格分别是多少元?

(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.

查看答案和解析>>

同步练习册答案